Skip to main content
Log in

Texture and grain-boundary evolutions of continuous cast and direct chill cast AA 5052 aluminum alloy during cold rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercially produced hot bands of continuous cast (CC) and direct chill (DC) cast AA 5052 aluminum alloy were cold rolled to different reductions from 10 pct through 90 pct. Evolution of deformation textures in the CC and DC materials was investigated by using three-dimensional orientation distribution functions (ODFs) that were determined by X-ray diffraction. The electron backscatter diffraction (EBSD) technique was adopted to keep track of the evolution of grain boundaries of CC and DC materials during the early stages of cold rolling (≤40 pct thickness reduction). Results showed that the Cube cluster is found in annealed DC hot band. A much stronger Cube orientation is found in DC hot band than in CC hot band. The cold rolling texture evolutions for CC and DC materials follow the same path. The α and β fibers become well developed after 60 pct cold rolling in both CC and DC materials. The highest intensity along the β fiber (skeleton line) is located near the S orientation {123}〈634〉 in both materials. There exists a path by which the copper orientation (112)\([\overline {11} 1]\) develops at the expense of the Cube orientation (001)\([0\bar 10]\) with an increase in cold rolling reductions. Low-angle boundaries with misorientation angles between 1.5 and 5 deg are rapidly increased during the early stage of cold rolling. There is no evidence of the development of twin and twin-related boundaries in either CC or DC materials when the cold rolling reductions are less than 40 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Wells, D.J. Lloyd, I.V. Samarasekera, J.K. Brimacombe, and E.B. Hawbolt: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 621–33.

    CAS  Google Scholar 

  2. B. Ren, Z. Li, C. Li, S. Ding, and J.G. Morris: in Advances in Hot Deformation Textures and Microstructures, J.J. Jonas, T.R. Bieler, and K.J. Bowman, eds., TMS, Warrendale, PA, 1993, pp. 207–21.

    Google Scholar 

  3. W.C. Liu, C.-S. Man, and J.G. Morris: Scripta Mater., 2001, vol. 45, pp. 807–14.

    Article  CAS  Google Scholar 

  4. T. Sakai, S. Hamada, and Y. Saito: Scripta Mater., 2001, vol. 44, pp. 2569–73.

    Article  CAS  Google Scholar 

  5. T. Sheppard and M.A. Zaidi: Met. Technol., 1982, vol. 9, pp. 368–74.

    Google Scholar 

  6. M.A. Zaidi and T. Sheppard: Mater. Sci. Technol., 1985, vol. 1, pp. 593–99.

    CAS  Google Scholar 

  7. L.G. Schulz: J. Appl. Phys., 1949, vol. 20, pp. 1033–36.

    Article  Google Scholar 

  8. H.J. Bunge: Texture Analysis in Material Science, 1st ed., Butterworth and Co., London, 1982, pp. 1–41.

    Google Scholar 

  9. K. Pawlik: Phys. Status Solidi (b), 1986, vol. 134, pp. 477–83.

    Google Scholar 

  10. J. Pospiech and K. Lücke: Acta Metall., 1975, vol. 23, pp. 997–1007.

    Article  CAS  Google Scholar 

  11. K. Lücke, J. Pospiech, J. Jura, and J. Hirsch: Z. Metallkd., 1986, vol. 77, pp. 312–21.

    Google Scholar 

  12. J.A. Venables and C.J. Harland: Phil. Mag., 1973, vol. 27, pp. 1193–200.

    CAS  Google Scholar 

  13. D.J. Dingley: Scanning Electron Microscopy, 1984, vol. 2, pp. 569–75.

    Google Scholar 

  14. B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.

    CAS  Google Scholar 

  15. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  16. H. Grimmer, W. Bollmann, and D.H. Warrington: Acta Cryst., 1974, vol. 30, pp. 197–207.

    Article  Google Scholar 

  17. M.L. Kronberg and F.H. Wilson: Trans. AIME, 1949, vol. 185, pp. 501–14.

    Google Scholar 

  18. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.

    Article  CAS  Google Scholar 

  19. J.K. MacKenzie: Biometrica, 1958, vol. 45, pp. 229–40.

    Google Scholar 

  20. T.R. McNelley, D.L. Swisher, and M.T. Pérez-Prado: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 279–90.

    CAS  Google Scholar 

  21. T.R. McNelley, M.E. McMahon, and S.J. Hales: Scripta Mater., 1997, vol. 36, pp. 369–75.

    Article  CAS  Google Scholar 

  22. M. Eddahbi, T.R. McNelley, and O.A. Ruano: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1093–102.

    Article  CAS  Google Scholar 

  23. M.T. Pérez-Prado, G. González-Doncel, O.A. Ruano, and T.R. McNelley: Acta Mater., 2001, vol. 49, pp. 2259–68.

    Article  Google Scholar 

  24. O. Daaland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1389–411.

    Article  CAS  Google Scholar 

  25. O. Daaland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1413–35.

    Article  CAS  Google Scholar 

  26. H.E. Vatne, R. Shahani, and E. Nes: Acta Mater., 1996, vol. 44, pp. 4447–62.

    Article  CAS  Google Scholar 

  27. K. Matsumoto, T. Shibayanagi, and Y. Umakoshi: Acta Mater., 1997, vol. 45, pp. 439–51.

    Article  CAS  Google Scholar 

  28. J. Hirsch, E. Nes, and K. Lücke: Acta Metall., 1987, vol. 35, pp. 427–38.

    Article  CAS  Google Scholar 

  29. J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2863–82.

    Article  CAS  Google Scholar 

  30. S. Panchanadeeswaran and D.P. Field: Acta Metall. Mater., 1995, vol. 43, pp. 1683–92.

    Article  CAS  Google Scholar 

  31. O. Engler: Acta Mater., 2000, vol. 48, pp. 4827–40.

    Article  CAS  Google Scholar 

  32. O. Engler: Acta Metall., 1989, vol. 37, pp. 2743–53.

    Article  CAS  Google Scholar 

  33. G. Wassermann: Z. Metallkd., 1963, vol. 54, pp. 61–5.

    CAS  Google Scholar 

  34. R.E. Smallman and C.S. Lee: Mater. Sci. Eng., 1994, vol. A184, pp. 97–112.

    Google Scholar 

  35. C.S. Lee and B.J. Duggan: Acta Metall. Mater., 1993, vol. 41, pp. 2691–9.

    Article  CAS  Google Scholar 

  36. C.S. Lee, B.J. Duggan, and R.E. Smallman: Phil. Mag. Lett., 1993, vol. 68, pp. 185–90.

    CAS  Google Scholar 

  37. Y. Zhou, K.W. Neale, and L.S. Tóth: Text. Microstr., 1991, vol. 14–18, pp. 1055–60.

    Article  Google Scholar 

  38. Y. Zhou, L.S. Tóth, and K.W. Neale: Acta Metall. Mater., 1992, vol. 40, pp. 3179–93.

    Article  CAS  Google Scholar 

  39. G.D. Köhlhoff, B. Krentscher, and K. Lücke: Proc. 7th Int. Conf. on Textures, C.M. Brakman, P. Jongenburger, and E.J. Mittemeijer, eds., Netherlands Society of Materials Science, Noordwijkerhout, Netherlands, 1984, pp. 95–100.

    Google Scholar 

  40. D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Morris, J.G. Texture and grain-boundary evolutions of continuous cast and direct chill cast AA 5052 aluminum alloy during cold rolling. Metall Mater Trans A 34, 951–966 (2003). https://doi.org/10.1007/s11661-003-0225-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0225-7

Keywords

Navigation