Skip to main content

Advertisement

Log in

Strengthening by high densities of nanometer-size precipitates: Oxides in Ni

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We have measured the yield strengths of Ni samples having high densities of nanometer-size precipitates. Surface layers containing NiO or γ-Al2O3 precipitates were formed in Ni specimens by ion implanting O alone or O and Al, with subsequent annealing. The yield strengths of the layers were obtained through nanoindentation in conjunction with finite-element simulations. The yield strengths of the Ni alloys were combined with earlier data for O-implanted Al and compared to predictions of a recent treatment of the Orowan mechanism, in which dislocations loop around precipitates and by-pass them. The strengths vary with changes in precipitate microstructure, as predicted, and conform to the theory in absolute magnitude to within a factor of 1.5. This agreement extends over broad microstructural ranges: precipitate sizes from ∼1 to 20 nm, volume fractions from 0.05 to 0.30, densities from 4×1016/cm3 to as high as ∼1020/cm3, edge-to-edge spacings as small as 1.4 nm, two precipitated phases, and two metal matrices with shear moduli differing by a factor of 3. Ion implantation increases near-surface yield strengths to as high as 5 GPa, suggesting that this treatment may be useful for hardening the surfaces of Ni components in micro-electromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan: Symp. on Internal Stresses in Metals and Alloys, Institute of Metals, London, 1948, p. 451.

    Google Scholar 

  2. P.B. Hirsch and F.J. Humphreys: Proc. R. Soc. London A, 1970, vol. A318, pp. 45–72.

    Google Scholar 

  3. J.D. Embury: Metall. Trans. A, 1985, vol. A16, pp. 2191–200.

    Google Scholar 

  4. R.L. Jones: Acta Metall., 1969, vol. 17, pp. 229–35.

    Article  CAS  Google Scholar 

  5. R. Ebeling and M.F. Ashby: Phil. Mag., 1966, vol. 13, pp. 805–34.

    CAS  Google Scholar 

  6. E. Nembach: Particle Strengthening of Metals and Alloys, John Wiley & Sons, New York, NY, 1997.

    Google Scholar 

  7. D.M. Follstaedt: in Materials Science and Technology, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH Publishers, New York, NY, 1991, vol. 15, pp. 247–87.

    Google Scholar 

  8. R.J. Bourcier, S.M. Myers, and D.H. Polonis: Nucl. Inst. Meth. B, 1990, vol. B44, pp. 278–88.

    Article  CAS  Google Scholar 

  9. D.M. Follstaedt, S.M. Myers, R.J. Bourcier, and M.T. Dugger: Proc. Int. Conf. on Beam Processing of Advanced Materials (1992), J. Singh and S.M. Copley, eds., TMS, Warrendale, PA, 1993, pp. 507–17.

    Google Scholar 

  10. J.A. Knapp, S.M. Myers, D.M. Follstaedt, and G.A. Petersen: J. Appl. Phys., 1999, vol. 86, pp. 6547–56.

    Article  CAS  Google Scholar 

  11. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  12. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann: J. Appl. Phys., 1999, vol. 85, pp. 1460–74.

    Article  CAS  Google Scholar 

  13. S.M. Myers, J.A. Knapp, D.M. Follstaedt, and M.T. Dugger: J. Appl. Phys., 1998, vol. 83, pp. 1256–64.

    Article  CAS  Google Scholar 

  14. E. Nembach and G. Neite: Progr. Mater. Sci., 1985, vol. 29, pp. 177–319.

    Article  CAS  Google Scholar 

  15. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids, Pergamon, New York, NY, 1985. The implanted ion distributions in Ni were calculated using the Monte Carlo TRIM-90, provided by J.F. Ziegler, IBM Corporation, Yorktown Heights, NY, private communication, 1990.

    Google Scholar 

  16. W.-K. Chu, J.W. Mayer, and M.-A. Nicolet: Backscattering Spectrometry, Academic Press, New York, NY, 1978.

    Google Scholar 

  17. SIMNRA Users Guide, Technical Report No. IPP 0/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1997.

  18. M.H. Loretto and R.E. Smallman: Defect Analysis in Electron Microscopy, Chapman and Hall, London, 1975, pp. 57–59.

    Google Scholar 

  19. Powder Diffraction File, International Center for Diffraction Data, Newton Square, PA. fcc Ni: card 04-0850; NiO: card 04-0835; NiAl2O4: card 10-0339; and γ-Al2O3: card 10-0425.

  20. J.B. Pethica, R. Hutchings, and W.C. Oliver: Phil. Mag. A, 1983, vol. A48, pp. 593–606.

    Google Scholar 

  21. M.F. Doerner and W.D. Nix: J. Mater. Res., 1986, vol. 1, pp. 601–09.

    Google Scholar 

  22. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, p. 1564.

    CAS  Google Scholar 

  23. G.M. Pharr and W.C. Oliver: Mater. Res. Soc. Bull., 1992, vol. 17 (7), pp. 28–33.

    Google Scholar 

  24. All our indentation tests were performed at the Nano Instruments Innovation Center of MTS Systems Corp., Knoxville, TN.

  25. ABAQUS version 5.7, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.

  26. Metals Handbook, ASM, Metals Park, OH, 1990, vol. 2, pp. 437 and 1143.

  27. J. Lubliner: Plasticity Theory, Macmillan, New York, NY, 1976.

    Google Scholar 

  28. Atlas of Stress-Strain Curves, H.E. Boyer, ed., ASM, Metals Park, OH, 1987, p. 551.

    Google Scholar 

  29. J.-W. Park and C.J. Altstetter: Metall. Trans. A, 1987, vol. A18, pp. 43–50.

    Google Scholar 

  30. D.M. Follstaedt, S.M. Myers, and R.J. Bourcier: Nucl. Instrum. Meth. B, 1991, vols. B59–B60, pp. 909–13.

    Article  Google Scholar 

  31. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham, England, 1981. This text discusses the thermodynamics and structural considerations of precipitation; chapter 3 on interfacial energies and chapter 5 on nucleation.

  32. Handbook of Chemistry and Physics, R.C. Weast and M.J. Astle, eds., CRC Press, West Palm Beach, FL, 1978, p. D-67. The heat of formation of γ-Al2O3 is −385 kcal/mole.

    Google Scholar 

  33. W. Gust, M.B. Hintz, A. Lodding, H. Odelius, and B. Prendel: Phys. Status Solidi A, 1981, vol. A64, pp. 187–94.

    Article  Google Scholar 

  34. R.A. Swalin and A. Martin: Trans. AIME, 1956, vol. 206, pp. 567–72.

    Google Scholar 

  35. W.H. Gitzen: Alumina as a Ceramic Material, American Ceramic Society, Columbus, OH, 1970, pp. 3 and 29. Note that the γ-Al2O3 phase is referred to as η in this reference.

    Google Scholar 

  36. M. Nastasi, J.-P. Hirvonen, T.T. Jervis, G.M. Pharr, and W.C. Oliver: J. Mater. Res., 1988, vol. 3, pp. 226–32.

    CAS  Google Scholar 

  37. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Acta Metall. Mater., 1994, vol. 42, pp. 475–87.

    Article  CAS  Google Scholar 

  38. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman: Acta Metall. Mater., 1993, vol. 41, pp. 2855–65.

    Article  CAS  Google Scholar 

  39. M.S. De Guzman, G. Neubauer, P. Flinn, and W.D. Nix: Mater. Res. Soc. Symp. Proc., 1993, vol. 308, pp. 613–19.

    Google Scholar 

  40. Q. Ma and D.R. Clarke: J. Mater. Res., 1995, vol. 10, pp. 853–63.

    CAS  Google Scholar 

  41. W.D. Nix and H. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–25.

    Article  CAS  Google Scholar 

  42. J.A. Knapp, D.M. Follstaedt, J.C. Barbour, and S.M. Myers: Nucl. Instrum. Meth. B, 1997, vols. B127–B128, pp. 935–39.

    Article  Google Scholar 

  43. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger, Malabar, FL, 1992, pp. 63–64 and 836–37.

    Google Scholar 

  44. F.A. McClintock and A.S. Aragon: Mechanical Behavior of Materials, TechBooks, Fairfax, VA, 1966, pp. 118, 276–79, and 453–58.

    Google Scholar 

  45. D. Roundy, C.R. Krenn, M.L. Cohen, and J.W. Morris: Phys. Rev. Lett., 1999, vol. 82, pp. 2713–16.

    Article  CAS  Google Scholar 

  46. A. Kelly and N.H. Macmillian: Strong Solids, 3rd ed., Clarendon Press, Oxford, UK, 1986.

    Google Scholar 

  47. S.S. Brenner: J. Appl. Phys., 1956, vol. 27, pp. 1484–91.

    Article  CAS  Google Scholar 

  48. L.E. Pope, F.G. Yost, D.M. Follstaedt, J.A. Knapp, and S.T. Picraux: in Wear of Materials 1983, K.C. Ludema, ed., ASME, New York, NY, 1983, pp. 280–87.

    Google Scholar 

  49. H. Holleck: J. Vac. Sci. Technol. A, 1986, vol. A4, pp. 2661–69.

    Article  Google Scholar 

  50. R.M. Christensen: Mechanics of Composite Materials, John Wiley & Sons, New York, NY, 1979, pp. 31–52.

    Google Scholar 

  51. S. Bader, P.A. Flinn, E. Arzt, and W.D. Nix: J. Mater. Res., 1994, vol. 9, pp. 318–27.

    CAS  Google Scholar 

  52. E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer: Microelectron. Eng., 1986, vol. 4, pp. 35–56.

    Article  CAS  Google Scholar 

  53. H. Guckel, K.J. Skrobis, J. Klein, and T.R. Christenson: J. Vac. Sci. Technol. A, 1994, vol. A12, pp. 2559–64.

    Article  Google Scholar 

  54. T.E. Buchheit, J.R. Michael, S.H. Goods, R.P. Janek, and P.T. Kotula: Sandia National Laboratories, Albuquerque, private communication, 2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follstaedt, D.M., Knapp, J.A. & Myers, S.M. Strengthening by high densities of nanometer-size precipitates: Oxides in Ni. Metall Mater Trans A 34, 935–949 (2003). https://doi.org/10.1007/s11661-003-0224-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0224-8

Keywords

Navigation