Skip to main content
Log in

Effect of nitrogen content on the environmentally-assisted cracking susceptibility of duplex stainless steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of nitrogen content on the stress corrosion cracking (SCC) behavior of 22 pct Cr duplex stainless steel (DSS) in chloride solutions was investigated in this study. Slow strain rate testing (SSRT) was employed to evaluate the SCC susceptibility. The experimental results showed that the tensile strength and ductility of 22 pct Cr DSS increased with increasing amount of nitrogen (in the range of 0.103 to 0.195 wt pct). Slow strain rate testing results indicated that 22 pct Cr DSSs were resistant to SCC in 3.5 wt pct NaCl solution at 80 °C. However, environmentally assisted cracking occurred in 40 wt pct CaCl2 solution at 100 °C and in boiling 45 wt pct MgCl2 solution at 155 °C, respectively. The effects of environment and nitrogen content in DSS on the cracking susceptibility are discussed in this article. Selective dissolution of ferrite phase was found to participate in the SCC process for tests in CaCl2 solution. At temperatures above 80 °C, dynamic strain aging was found to occur in various environments at a strain beyond plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.

    CAS  Google Scholar 

  2. R.M. Davison and J.D. Redmond: Mater. Des., 1991, vol. 12, pp. 187–92.

    Google Scholar 

  3. A.J. Sedriks: Corrosion, 1989, vol. 45, pp. 510–18.

    CAS  Google Scholar 

  4. Wen-Ta Tsai and Ming-Shan Chen: Corr. Sci., 2000, vol. 42, pp. 545–59.

    Article  CAS  Google Scholar 

  5. A. Miyasaka, T. Kanamaru, and H. Ogawa: Corrosion, 1996, vol. 52, pp. 592–99.

    Article  CAS  Google Scholar 

  6. Horng-Yih Liou, Yeong-Tsuen Pan, Rong-Iuan Hsieh, and Wen-Ta Tsai: J. Mater. Eng. Performance, 2001, vol. 10, pp. 231–41.

    Article  CAS  Google Scholar 

  7. A. Laitinen and H. Hänninen: Corrosion, 1996, vol. 52, pp. 295–306.

    CAS  Google Scholar 

  8. J.W. Fourie and F.P.A. Robinson: Stainless Steels ’91, ISIJ, Tokyo, 1991, pp. 111–17.

    Google Scholar 

  9. N. Sridhar and J. Kolts: Corrosion, 1987, vol. 43, pp. 646–51.

    CAS  Google Scholar 

  10. R.N. Gunn: Duplex Stainless Steels—Microstructures, Properties and Applications, Abringto Publishing, Cambridge, UK, 1997, pp. 14–23.

    Google Scholar 

  11. P.R. Levey and A. van Bennekom: Corrosion, 1995, vol. 51, pp. 911–21.

    CAS  Google Scholar 

  12. A. Hendry: Wire J. Int., 1994, vol. 27, pp. 140–44.

    CAS  Google Scholar 

  13. J. Rawers and M. Grujicic: Mater. Sci. Eng. A, 1996, vol. A207, pp. 188–94.

    CAS  Google Scholar 

  14. F.B. Pickering: Stainless Steel ’84, The Institute of Metals, London, 1985, pp. 2–28.

    Google Scholar 

  15. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

    CAS  Google Scholar 

  16. H. Tsuge, Y. Tarutani, and T. Kudo: Corrosion, 1988, vol. 44, pp. 305–14.

    CAS  Google Scholar 

  17. S.J. Pawel, E.E. Stanabury, and C.D. Lundin: Corrosion, 1989, vol. 45, pp. 125–33.

    CAS  Google Scholar 

  18. I. Olefjord and L. Wegrelius: Corr. Sci., 1996, vol. 38, pp. 1203–20.

    Article  CAS  Google Scholar 

  19. S.-L. Chou, M.-J. Tsai, W.-T. Tsai, and J.-T. Lee: Mater. Chem. Phys., 1997, vol. 51, pp. 97–101.

    Article  CAS  Google Scholar 

  20. P. Kangas and J.M. Nicholls: Werkst. Korr., 1995, vol. 46, pp. 354–65.

    Article  CAS  Google Scholar 

  21. C.-M. Tseng, H.-Y. Liou, and W.-T. Tsai: Corrosion/2000, NACE, Houston, TX, 2000, paper no. 214.

    Google Scholar 

  22. Horng-Yih Liou, Rng-Iuan Hsieh, and Wen-Ta Tsai: Mater. Chem. Phys., 2002, vol. 74, pp. 33–44.

    Article  CAS  Google Scholar 

  23. C.J. Long and W.T. DeLong: Weld. J., 1973, vol. 52, pp. 281s-97s.

    Google Scholar 

  24. F.B. Pickering: Int. Met. Rev., 1960, vol. 21, pp. 227–68.

    Google Scholar 

  25. L.J. Scwartzendrubber, L.H. Bennett, E.A. Schoefer, W.T. DeLong, and H.C. Campbell: Weld. J., 1974, vol. 53, pp. 1s-12s.

    Google Scholar 

  26. J. Foct, T. Magnin, P. Perrot, and J. B. Vogt: Duplex Stainless Steels ’91, Les Editions de Physique, Les Ulis Cedex A, France, pp. 49–65.

  27. I. Tamura, Y. Tomota, A. Akao, Y. Yamaoka, M. Ozawa, and S. Kantani: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 283–292.

    Google Scholar 

  28. G.J. Theus and R.W. Staehle: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys, NACE, Houston, TX, 1977, pp. 845–92.

    Google Scholar 

  29. M. Kowaka and H. Fujikawa: Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 243–49.

    Google Scholar 

  30. R.W. Staehle: Theory of Stress Corrosion Cracking in Alloys, NATO, Brussels, 1971, pp. 223–88.

    Google Scholar 

  31. P.R. Rhodes: Corrosion, 1969, vol. 25, pp. 462–72.

    CAS  Google Scholar 

  32. A. Van Den Beukel: Acta Metall., 1980, vol. 28, pp. 965–69.

    Article  Google Scholar 

  33. P.G. McCormick: Acta Metall., 1972, vol. 20, pp. 351–54.

    Article  CAS  Google Scholar 

  34. L.H. de Almeida, I. Le May, and P.R.O. Emygdio: Mater. Characterization, 1998, vol. 41, pp. 137–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, CM., Tsai, WT. & Liou, HY. Effect of nitrogen content on the environmentally-assisted cracking susceptibility of duplex stainless steels. Metall Mater Trans A 34, 95–103 (2003). https://doi.org/10.1007/s11661-003-0211-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0211-0

Keywords

Navigation