Skip to main content
Log in

Mechanical properties of iron processed by severe plastic deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, the mechanical properties of Fe processed via severe plastic deformation (equal-channel angular pressing (ECAP)) at room temperature were investigated for the first time. The grain size of annealed Fe, with an initial grain size of about 200 µm, was reduced drastically during ECAP. After eight passes, the grain size reaches 200 to 400 nm, as documented by means of transmission electron microscopy (TEM). The value of microhardness during pressing increases 3 times over that of the starting material after the first pass and increases slightly during subsequent pressing for higher-purity Fe. Examination of the value of microhardness after eight passes as a function of post-ECAP annealing temperature shows a transition from recovery to recrystallization, an observation that resembles the behavior reported for heavily deformed metals and alloys. The tensile and compression behaviors were examined. In tension, a drop in the engineering stress-engineering strain curve beyond maximum load was observed both in the annealed Fe and the ECAP Fe. This drop is related to the neck deformation. The fracture surface, examined by scanning electron microscopy (SEM), shows vein patterns, which is different from the dimples found on the fracture surface of annealed Fe. In compression, an initial strain-hardening region followed by a no-strain-hardening region was observed in the ECAP Fe. The yield strength in tension of the ECAP Fe was observed to be higher than that in compression. The strengthening mechanisms and softening behavior are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Fougere, J.R. Weertman, and R.W. Siegel: NanoStruct. Mater., 1995, vol. 5, pp. 127–34.

    Article  Google Scholar 

  2. T.R. Malow and C.C. Koch: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2285–95.

    Article  CAS  Google Scholar 

  3. T.R. Malow and C.C. Koch: Acta Mater., 1998, vol. 46, pp. 6459–73.

    Article  CAS  Google Scholar 

  4. S. Takaki, K. Kawasaki, and Y. Kimura: in Ultrafine Grained Materials, R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, and T.C. Lowe, eds., TMS, Warrendale, PA, 2000, pp. 247–55.

    Google Scholar 

  5. D. Jia, K.T. Ramesh, and E. Ma: in Ultrafine Grained Materials, R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, and T.C. Lowe, eds., TMS, Warrendale, PA, 2000, pp. 309–18.

    Google Scholar 

  6. Y. Sakai, M. Ohtaguchi, Y. Kimura, and K. Tsuzaki: in Ultrafine Grained Materials, R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, and T.C. Lowe, eds., TMS, Warrendale, PA, 2000, pp. 361–70.

    Google Scholar 

  7. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Acta Mater., 1996, vol. 44, pp. 4705–12.

    Article  CAS  Google Scholar 

  8. D. Jia, K.T. Ramesh, and E. Ma: Scripta Mater., 2000, vol. 42, pp. 73–78.

    CAS  Google Scholar 

  9. K.T. Park, Y.S. Kim, J.G. Lee, and D.H. Shin: Mater. Sci. Eng., 2000, vol. A293, pp. 165–72.

    CAS  Google Scholar 

  10. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795–800.

    Article  CAS  Google Scholar 

  11. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589–99.

    Article  CAS  Google Scholar 

  12. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32.

    CAS  Google Scholar 

  13. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2011–13.

    Article  CAS  Google Scholar 

  14. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984.

    Google Scholar 

  15. B.Q. Han and D.C. Dunand: Mater. Sci. Eng., 2000, vol. A277, pp. 297–304.

    CAS  Google Scholar 

  16. B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Co., Inc., Reading, MA, 1978.

    Google Scholar 

  17. H.P. Klug and L. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974, p. 661.

    Google Scholar 

  18. A.K. Sinha: Ferrous Physical Metallurgy, Butterworth and Co., London, 1989, p. 98.

    Google Scholar 

  19. F. Scholz, J.H. Driver, and E. Woldt: Scripta Mater., 1999, vol. 40, pp. 949–54.

    Article  CAS  Google Scholar 

  20. P. Cotterill and P.R. Mould: Recrystallization and Grain Growth in Metals, Surrey University Press, London, 1976, p. 55.

    Google Scholar 

  21. A.A. Nazarov, A.E. Romanov, and R.Z. Valiev: Acta Metall. Mater., 1993, vol. 41, pp. 1033–40.

    Article  CAS  Google Scholar 

  22. G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  23. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  24. T.H. Courtney: Mechanical Behavior of Materials, 2nd ed., McGraw-Hill Higher Education, New York, NY, 2000.

    Google Scholar 

  25. E. Schafler, M. Zehetbauer, A. Borbely, and T. Ungar: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 445–48.

    Google Scholar 

  26. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1982, p. 32.

    Google Scholar 

  27. N. Hansen: Metall. Trans. A, 1985, vol. 16A, pp. 2167–90.

    CAS  Google Scholar 

  28. Y. Bergstrom and H. Hallen: Met. Sci., 1983, vol. 17, pp. 341–47.

    Article  Google Scholar 

  29. W.B. Morrison and R.L. Miller: in Ultrafine-Grain Metals, J.J. Burke and J. Weiss, eds., Syracuse University Press, Syracuse, NY, 1970, pp. 182–211.

    Google Scholar 

  30. T.G. Nieh, J. Wadsworth, C.T. Liu, G.E. Ice, and K.S. Chung: Mater. Trans., 2001, vol. 42, pp. 613–18.

    Article  CAS  Google Scholar 

  31. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: J. Mater. Res., 2001, vol. 16, pp. 2836–44.

    CAS  Google Scholar 

  32. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Scripta Mater., 2002, vol. 46, pp. 43–47.

    Article  CAS  Google Scholar 

  33. J.E. Carsley, W.W. Milligan, S.A. Hackey, and E.C. Aifantis: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2479–81.

    CAS  Google Scholar 

  34. J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2261–71.

    Article  CAS  Google Scholar 

  35. S. Kinoshita, P.J. Wray, and G.T. Horne: Trans. TMS-AIME, 1965, vol. 233, pp. 1902–04.

    CAS  Google Scholar 

  36. B.J. Brindley and J.T. Barnby: Acta Metall., 1966, vol. 14, pp. 1765–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B.Q., Mohamed, F.A. & Lavernia, E.J. Mechanical properties of iron processed by severe plastic deformation. Metall Mater Trans A 34, 71–83 (2003). https://doi.org/10.1007/s11661-003-0209-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0209-7

Keywords

Navigation