Skip to main content
Log in

Aspects of orientation-dependent grain growth in extra-low carbon and interstitial-free steels during continuous annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work concentrates on the application of orientation imaging microscopy (OIM) based on the electron backscattered diffraction (EBSD) technique to the investigation of the microstructural evolution of an extra-low carbon (ELC) steel and a Ti-Nb-bearing interstitial-free (IF) steel, during continuous annealing. Aspects like the nucleation, the evolution of the recrystallized volume fraction and grain size of grains with different orientations, the interface area limiting recrystallized {111} regions, and the apparent growth rates have been considered. Different criteria have been applied in order to identify crystallites produced during annealing. During the first stages of annealing, a network of grain boundaries with misorientations higher than 10 deg is produced, mainly inside the deformed γ-fiber grains. The crystallites formed within this network, free from cells or subgrains at their interiors, can be considered as potential nuclei. However, among all, only some of them become effective due to an important selection. The {111} recrystallized grains have a significant size and number advantage as compared with other texture components, and a hard impingement between clusters of {111} grains is produced during grain growth. The effect of grain growth behind the recrystallization front seems to be negligible as compared with the grain coarsening produced by the migration of this front, driven by the cold-work stored energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Hudd: Processing, Cold Working and Annealing, Materials Science and Technology, F.B. Pickering, eds., VHC, Germany, 1991, vol. 7, pp. 219–84.

    Google Scholar 

  2. M. Abe: Processing, Cold Working and Annealing, Materials Science and Technology, F.B. Pickering, ed., VHC, Germany, 1991, pp. 285–333.

    Google Scholar 

  3. W.B. Hutchinson: Int. Mater. Rev., 1984, vol. 29(1), pp. 25–42.

    CAS  Google Scholar 

  4. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39 pp. 129–72.

    CAS  Google Scholar 

  5. I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.

    Article  CAS  Google Scholar 

  6. B.F. Decker and D. Harker: J. Appl. Phys., 1951, vol. 22, pp. 900–04.

    Article  Google Scholar 

  7. B. Hutchinson and L. Ryde: in Thermomechanical Processing in Theory, Modelling and Practice, B. Hutchinson, M. Anderson, G. Engberg, B. Karlsson, and D. Siwecki, eds., Stockholm, 1996, pp. 145–61.

  8. K. Lücke: Can. Metall. Q., 1974, vol. 13, pp. 261–74.

    Google Scholar 

  9. G. Ibe and K. Lücke: Arch. Eisehüttenwes, 1968, vol. 39, pp. 693–703.

    CAS  Google Scholar 

  10. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng., 1997, vol. A238, pp. 343–50.

    CAS  Google Scholar 

  11. B. Verlinden, I. Samajdar, and P. Van Houtte: 4th Int. Conf. on Recrystallisation and Related Phenomena, Eds. T. Sakai and H.G. Susuki, eds., The Japan Institute of Metals, Tsukuba, Japan, 1999, vol. 3, pp. 373–78.

    Google Scholar 

  12. L. Kestens and J.J. Jonas: Met. Mater., 1999, vol. 5, pp. 419–27.

    CAS  Google Scholar 

  13. L. Kestens, K. Verbeken, and J.J. Jonas: Proc. 1st. Joint Int. Conf. on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, vol. 2, pp. 695–706.

    Google Scholar 

  14. H. Réglé: Proceedings of the First Joint International Conference on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, New York, 2001, vol. 2, pp. 707–17.

    Google Scholar 

  15. D. Juul Jensen: Acta Metall. Mater., 1995, vol. 43(11), pp. 4117–25.

    Article  CAS  Google Scholar 

  16. M.T. Lyttle and D. Juul Jensen: 4th Int. Conf. in Recrystallization and Related Phenomena, T. Sakai and H.G. Suzuki, eds., The Japan Institute of Metals, Tsukuba, Japan, 1999, pp. 185–90.

    Google Scholar 

  17. D. Juul Jensen: Proc. 2nd Int. Conf. on Grain Growth in Polycrystalline Materials, Part 2, H. Yoshinaga, T. Watanabe, and N. Takahashi, eds., Transtec Publications, Kitakyushu, Japan: Mater. Sci. Forum, 1995, vols. 204–206, pp. 713–22.

    Google Scholar 

  18. F.J. Humprheys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, United Kingdom, 1996, pp. 173–220.

    Google Scholar 

  19. P. Van Houtte: Manual of MTM-FHM, MTM-KU, Leuven, Belgium, 1995.

    Google Scholar 

  20. H. Takechi, H. Kato, and S. Nagashima: Trans. TMS-AIME, 1968, vol. 242, p. 56.

    CAS  Google Scholar 

  21. W.B. Hutchinson: Met. Sci., 1974, vol. 8, pp. 185–96.

    CAS  Google Scholar 

  22. D. Juul Jensen: Proc. 4th Int. Conf. on Recrystallization and Related Phenomena, T. Sakai and H.G. Suzuki, eds., The Japan Institute of Metals, Tsukuba, Japan, 1999, vol. 13, pp. 3–14.

    Google Scholar 

  23. I. Samajdar, B. Verlinden, and P. Van Houtte: Acta Mater. 1998, vol. 46, pp. 2751–63.

    Article  CAS  Google Scholar 

  24. K. Mukunthan and E.B. Hawbolt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3410–23.

    Article  CAS  Google Scholar 

  25. D.O. Wilshynsky, G. Krauss, and D.K. Matclock: Proc. Int. Symp. on Interstitial Free Steel Sheet: Processing, Fabrication and Properties, L.E. Collins and D.L. Baragar, eds., CANMET, Ontario, Canada, 1991, pp. 69–79.

    Google Scholar 

  26. M.M. Petite: PhD. Thesis, University of Navarra, San Sebastian, 1999.

    Google Scholar 

  27. W.C. Leslie, F.J. Plecity, and J.T. Michalack: Trans. TMS-AIME, 1961, vol. 221, pp. 691–700.

    CAS  Google Scholar 

  28. G. Venturello, C. Antonione, and F. Bonaccorso: Trans. TMS-AIME, 1963, vol. 227, pp. 1433–39.

    CAS  Google Scholar 

  29. I. Guttiérrez, M.M. Petite, J.I. Larburu, J. Zaitegui, W.B. Hutchinson, D. Artymowicz, P.J. Evans, G.J. Spurr, H.K.D.H. Badhesia, and N. Chester: Modelling of Microstructural Development During Continuous Annealing Process, Technical Steel Research, EUR 19877 EN, Office for Official Publications of the European Communities, Luxembourg, Luxembourg, 2001.

    Google Scholar 

  30. E. Sheil: Arch. Eisenhuttenwes, 1935, vol. 12, pp. 565–67.

    Google Scholar 

  31. K. Magee, K. Mukunthan, and E.B. Hawbolt: Proc. Int. Conf. on Recrystallization in Metallic Materials, T. Chandra, ed., TMS, Warrendale, PA, 1990, pp. 393–98.

    Google Scholar 

  32. T. Urabe and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 435–42.

    CAS  Google Scholar 

  33. J.J. Jonas and L. Kestens: Proc. 1st Joint Int. Conf. on Recrystallization and Grain Growth, Vol. 2, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, pp. 49–60.

    Google Scholar 

  34. L. Kestens and J.J. Jonas: Met. Mater., 1999, vol. 5, pp. 419–27.

    Article  CAS  Google Scholar 

  35. P. Gangli, L. Kestens, and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1–9.

    Google Scholar 

  36. J.J. Jonas and L. Kestens: Proc. 2nd Int. Conf. on Grain Growth in Polycrystalline Materials, H. Yoshinaga, T. Watanabe, and N. Takahashi, eds., Transtec Publications, Kitakyushu, Switzerland; Materials Science Forum, 1995, vols. 204–206, pp. 155–68.

    Google Scholar 

  37. B. Verlinden, I. Samajdar, P. Van Houtte, and L. Kestens: Proc. Microalloying in Steels, J.M. Rodriguez-Ibabe, I. Guttiérez, and B. López, Trans Tech Publications, Aedermannsdorf, Switzerland; Mater. Sci. Forum, 1998, vols. 284–286, pp. 527–34.

    Google Scholar 

  38. I. Samajdar, B. Verlinden, and P. Van Houtte: Acta Mater., 1998, vol. 46, pp. 2751–63.

    Article  CAS  Google Scholar 

  39. H. Magnusson, D. Juul Jensen, and B. Hutchinson: Scripta Mater., 2001, vol. 44, pp. 435–41.

    Article  CAS  Google Scholar 

  40. B.B. Rath: in Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1097–1103.

    Google Scholar 

  41. D. Juul Jensen: Proc. 1st Joint Int. Conf. on Recrystallization and Grain Growth, Vol. 1. G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, pp. 73–86.

    Google Scholar 

  42. J.W. Cahn and W.C. Hagel: Acta Metall., 1963, vol. 11, pp. 561–74.

    Article  CAS  Google Scholar 

  43. B. Hutchinson and L. Ryde: Proc. 16th Risø Int. Symp. on Material Science: Microstructural and Crystallographic Aspects of Recrystallization, Roskilde, Denmark, 1995, N. Hansen, D. Juul Jensen, Y.L. Liu, and B. Ralph, eds., Roskilde, Denmark, pp. 105–17.

  44. H. Magnusson, D. Juul Jensen, and B. Hutchinson: Scripta Mater., 2001, vol. 44, pp. 435–41.

    Article  CAS  Google Scholar 

  45. D. Juul Jensen: Proc. 16th Risø Int. Symp. on Material Science, Roskilde, Denmark, N. Hansen, D. Juul Jensen, Y.L. Liu, and B. Ralph, eds., Roskilde, Denmark, 1995, pp. 119–37.

  46. D. Juul Jensen: Proc. 3rd Int. Conf. on Recrystallization and Related Phenomena. T. McNelley, ed., Monterey Institute of Advanced Studies, Monterey, CA, 1997, pp. 15–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocos, J.L., Novillo, E., Petite, M.M. et al. Aspects of orientation-dependent grain growth in extra-low carbon and interstitial-free steels during continuous annealing. Metall Mater Trans A 34, 827–839 (2003). https://doi.org/10.1007/s11661-003-0117-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0117-x

Keywords

Navigation