Skip to main content
Log in

Iron intermetallic phases in the Al corner of the Al-Si-Fe system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The iron intermetallics observed in six dilute Al-Si-Fe alloys were studied using thermal analysis, optical microscopy, and image, scanning electron microscopy/energy dispersive X-ray, and electron probe microanalysis/wavelength dispersive spectroscopy (EPMA/WDS) analyses. The alloys were solidified in two different molds, a preheated graphite mold (600 °C) and a cylindrical metallic mold (at room temperature), to obtain slow (∼0.2 °C/s) and rapid (∼15 °C/s) cooling rates. The results show that the volume fraction of iron intermetallics obtained increases with the increase in the amount of Fe and Si added, as well as with the decrease in cooling rate. The low cooling rate produces larger-sized intermetallics, whereas the high cooling rate results in a higher density of intermetallics. Iron addition alone is more effective than either Si or Fe+Si additions in producing intermetallics. The alloy composition and cooling rate control the stability of the intermetallic phases: binary Al-Fe phases predominate at low cooling rates and a high Fe:Si ratio; the β-Al5FeSi phase is dominant at a high Si content and low cooling rate; the α-iron intermetallics (e.g., α-Al8Fe2Si) exist between these two; while Si-rich ternary phases such as the δ-iron Al4FeSi2 intermetallic are stabilized at high cooling rates and Si contents of 0.9 wt pct and higher. Calculations of the solidification paths representing segregations of Fe and Si to the liquid using the Scheil equation did not conform to the actual solidification paths, due to the fact that solid diffusion is not taken into account in the equation. The theoretical models of Brody and Flemings[44] and Clyne and Kurz[45] also fail to explain the observed departure from the Scheil behavior, because these models give less weight to the effect of solid back-diffusion. An adjusted 500 °C metastable isothermal section of the Al-Si-Fe phase diagram has been proposed (in place of the equilibrium one), which correctly predicts the intermetallic phases that occur in this part of the system at low cooling rates (∼0.2 °C/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  2. I. Miki, H. Kosuge, and K. Nagahama: Journal of Japan Institute of Light Metals, 1975, vol. 25, pp. 1–9.

    CAS  Google Scholar 

  3. R.M. Young: Scripta Metall., 1981, vol. 15, pp. 1211–16.

    Article  CAS  Google Scholar 

  4. Y. Choi, J. Lee, W. Kim, and H. Ra: J. Mater. Sci., 1999, vol. 34, pp. 2163–68.

    Article  CAS  Google Scholar 

  5. H. Tanihata, T. Sugawara, K. Matsuda, and S. Ikeno: J. Mater. Sci., 1999, vol. 34, pp. 1205–10.

    Article  CAS  Google Scholar 

  6. V.G. Rilvin and G.V. Raynor: Int. Metall. Rev., 1981, vol. 3, pp. 133–52.

    Google Scholar 

  7. D. Munson: J. Inst. Met., 1967, vol. 95, pp. 217–19.

    CAS  Google Scholar 

  8. H.W. Philips: Annotated Equilibrium Diagrams of Some Aluminum Alloy Systems, The Institute of Metals, London, 1976.

    Google Scholar 

  9. V. Stefaniay, A. Griger, and T. Turmezey: J. Mater. Sci., 1987, vol. 22, pp. 539–46.

    Article  CAS  Google Scholar 

  10. C.Y. Sun and Mondolfo: J. Inst. Met., 1967, vol. 95, p. 384.

    CAS  Google Scholar 

  11. P.J. Black: Acta Cryst., 1955, vol. 8, pp. 43–48.

    Article  CAS  Google Scholar 

  12. H. Suzuki and M. Kanno: Journal of Japan Institute of Light Metals, 1978, vol. 28, pp. 558–65.

    CAS  Google Scholar 

  13. L.K. Walford: Acta Cryst., 1965, vol. 18, pp. 287–91.

    Article  CAS  Google Scholar 

  14. D. Porter and H. Westengen: Quantitative Microanalysis with High Spatial Resolution, TMS, Warrendale, PA, 1981, pp. 94–100.

    Google Scholar 

  15. H. Kosuge and I. Mizukami: Journal of Japan Institute of Light Metals, 1972, vol. 22, pp. 437–44.

    CAS  Google Scholar 

  16. S. Asami, T. Tanaka, and A. Hideno: Journal of Japan Institute of Light Metals, 1978, vol. 28, pp. 321–27.

    Google Scholar 

  17. H. Westengen: Z. Metallkd, 1982, vol. 73, pp. 360–68.

    CAS  Google Scholar 

  18. E.H. Hoolingsworth, G.R. Frank, and R.E. Willett: Trans. AIME, 1962, vol. 224, pp. 188–89.

    Google Scholar 

  19. R.C. Hudd and W.H. Taylor: Acta Cryst., 1962, vol. 15, pp. 441–42.

    Article  CAS  Google Scholar 

  20. K. Robinson and P.J. Black: Phil. Mag., 1953, vol. 44, pp. 1392–97.

    CAS  Google Scholar 

  21. M. Cooper: Acta Cryst., 1967, vol. 23, 1106–07.

    Article  Google Scholar 

  22. A.L. Dons: Z. Metallkd., 1985, vol. 76, pp. 151–58.

    CAS  Google Scholar 

  23. P. Skjerpe: Acta Cryst., 1988, vol. B44, pp. 480–86.

    CAS  Google Scholar 

  24. J. Gjonnes, V. Hansen, B. Berg, P. Runde, Y. Cheng, K. Gjonnes, D. Dorset, and C. Gilmore: Acta Cryst., 1998, vol. A54, pp. 306–19.

    CAS  Google Scholar 

  25. L. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1761–73.

    CAS  Google Scholar 

  26. J. Hatch: Aluminum, Properties and Physical Metallurgy, ASM, Metals Park, OH, 1984.

    Google Scholar 

  27. L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, AFS/Akanaluminium, Stockholm, 1990.

    Google Scholar 

  28. P. Skjerpe: Metall. Trans. A., 1987, vol. 18A, pp. 189–200.

    CAS  Google Scholar 

  29. H. Kosuge and I. Mizukami: Journal of Japan Institute of Light Metals, 1975, vol. 25, pp. 48–58.

    CAS  Google Scholar 

  30. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., London, 1976.

    Google Scholar 

  31. A.L. Dons: Z. Metallkd., 1984, vol. 75, pp. 170–74.

    CAS  Google Scholar 

  32. H. Jones: Mater. Sci. Eng., 1969, vol. 5, pp. 1–18.

    Article  CAS  Google Scholar 

  33. P. Liu and G.L. Dunlop: Mater. Sci. Technol., 1986, vol. 2, pp. 1009–18.

    CAS  Google Scholar 

  34. P. Liu and G.L. Dunlop: Aluminum Alloys—Their Physical and Mechanical Properties, Trans Tech. Publications Inc., Zurich, Switzerland, 1986, vol. 1, pp. 3–16.

    Google Scholar 

  35. L. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1761–73.

    CAS  Google Scholar 

  36. R. Mackay and J.E. Gruzleski: Int. J. Cast Met. Res., 1997, pp. 131–45.

  37. S. Tang and T. Sritharan: Mater. Sci. Technol., 1998, vol. 14, pp. 738–42.

    CAS  Google Scholar 

  38. H. Kosuge and I. Mizukami: Journal of Japan Institute of Light Metals, 1975, vol. 25, pp. 48–58.

    CAS  Google Scholar 

  39. W.B. Pearson: Handbook of Lattice Spacings and Structure of Metals and Alloys, Pergamon Press, London, 1967.

    Google Scholar 

  40. C.J. Simensen and R. Vellasamy: Z. Metallkd, 1977, vol. 68, pp. 426–31.

    Google Scholar 

  41. R. Ferro and A. Saccone: Physical Metallurgy, R. Cahn and P. Hansen, eds., North-Holland Pub., Amsterdam, 1996, [vol. 1], p. 206.

    Google Scholar 

  42. B. Yang, D. Stefanescu, and J. Leon-Torres: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3065–76.

    Article  CAS  Google Scholar 

  43. ASM Specially Handbook: Aluminum and Aluminum Alloys, J. Davis, ed., ASM International Materials Park, OH, 1994.

    Google Scholar 

  44. H.D. Brody and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, p. 615.

    CAS  Google Scholar 

  45. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  46. W. Kurz and D. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, p. 129.

    Google Scholar 

  47. C. Potard, G. Bienvenu, and B. Schaub: Proc. Sympos. on Thermodynamics of Nuclear Materials, Vienna, 4–8 Sept. 1967, The International Atomic Energy Agency, Vienna, 1968, pp. 809–23.

    Google Scholar 

  48. I. Miki and H. Warlimont: Z. Metallkd, 1968, vol. 59, pp. 254–64.

    CAS  Google Scholar 

  49. D.J. Allen and J.D. Hunt: Metall. Trans. A, 1979, vol. 10A, pp. 1389–97.

    CAS  Google Scholar 

  50. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1156–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalifa, W., Samuel, F.H. & Gruzleski, J.E. Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metall Mater Trans A 34, 807–825 (2003). https://doi.org/10.1007/s11661-003-0116-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0116-y

Keywords

Navigation