Skip to main content
Log in

Modeling of the atomic ordering processes in Fe3Al intermetallics by the monte carlo simulation method combined with electronic theory of alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of atomic ordering processes in Fe3Al has been modeled by the Monte Carlo (MC) simulation method combined with the electronic theory of alloys in pseudopotential approximation. The magnitude of atomic ordering energies of atomic pairs in the Fe3Al system has been calculated by means of electronic theory in pseudopotential approximation up to sixth coordination spheres and subsequently used as input data for MC simulation for more detailed analysis for the first time. The Bragg-Williams long-range order (LRO) and Cowley-Warren short-range order (SRO) parameters have been calculated from the equilibrium configurations attained at the end of MC simulation for each predefined temperature and Al concentration levels, which reveal the evolution of the system from DO3→B2→disordered state as temperature increases. The variation of ordering parameters with temperature has identified the transition temperature from DO3→B2 type superlattice, and from B2→disordered (α) solid solution at about 540 °C and >900 °C, respectively, showing good qualitative agreement with experimental results. The results of the present study imply that combination of electronic theory of alloys in pseudopotential approximation with MC simulation can be successfully applied for qualitative or semiquantitative analysis of energetical and structural characteristics of atomic ordering processes in Fe3Al intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Krivoglaz and A. Smirnov: The Theory of Order-Disorder in Alloys, MacDonald, London, 1964.

    Google Scholar 

  2. M.J. Marcinkowski: Treatise on Materials Science and Technology, Academic Press, New York, NY, 1974, p. 333.

    Google Scholar 

  3. U. Prakash, R.A. Buckley, H. Jones, and C.M. Sellars: Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 1113–26.

    CAS  Google Scholar 

  4. C.G. McKamey and C.T. Liu: Scripta Metall., 1990, vol. 24, pp. 2119–22.

    Article  CAS  Google Scholar 

  5. S.M. Allen and J.W. Cahn: Acta Metall., 1975, vol. 23, pp. 1017.

    Article  CAS  Google Scholar 

  6. N.S. Stoloff and R.G. Davies: Acta Metall., 1964, vol. 12, p. 473.

    Article  CAS  Google Scholar 

  7. M.G. Mendiratta, S.K. Ehlers, D.K. Chatterjee, and H.A. Lipsitt: Metall. Trans. A, 1987, vol. 18A, pp. 283–91.

    CAS  Google Scholar 

  8. A.O. Mekhrabov, A. Ressamoğlu, and T. Oüztuürk: J. Alloys Compounds, 1994, vol. 205, pp. 147–56.

    Article  CAS  Google Scholar 

  9. Computer Simulation Methods in Theoretical Physics: An Introduction, K. Binder and W. Heermann, eds., Springer-Verlag, Berlin, 1988.

    Google Scholar 

  10. M. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.N. Teller, and E. Teller: J. Chem. Phys., 1953, vol. 21, p. 1087.

    Article  CAS  Google Scholar 

  11. A. Baumgartner and W. Schweika: Monte Carlo Simulations, reprinted from IFF Bulletin, IFF, Julich, Germany, 1988, pp. 3–32.

    Google Scholar 

  12. N.S. Golosov, L.E. Popov, and L.Y. Pudan: J. Phys. Chem. Solids, 1973, vol. 34, pp. 1149–56.

    Article  CAS  Google Scholar 

  13. N.S. Golosov, L.E. Popov, and L.Y. Pudan: J. Phys. Chem. Solids, 1973, vol. 34, pp. 1157–62.

    Article  CAS  Google Scholar 

  14. N.S. Golosov, A.M. Tolstik, and L.Y. Pudan: J. Phys. Chem. Solids, 1976, vol. 37, pp. 273–77.

    Article  CAS  Google Scholar 

  15. N.S. Golosov and A.M. Tolstik: J. Phys. Chem. Solids, 1976, vol. 7, pp. 279–83.

    Article  Google Scholar 

  16. N.S. Golosov and A.M. Tolstik: J. Phys. Chem. Solids, 1974, vol. 35, pp. 1575–80.

    Article  CAS  Google Scholar 

  17. N.S. Golosov and A.M. Tolstik: J. Phys. Chem. Solids, 1974, vol. 35, pp. 1581–86.

    Article  CAS  Google Scholar 

  18. N.S. Golosov and A.M. Tolstik: J. Phys. Chem. Solids, 1975, vol. 36, pp. 899–902.

    Article  CAS  Google Scholar 

  19. N.S. Golosov and A.M. Tolstik: J. Phys. Chem. Solids, 1975, vol. 36, pp. 903–07.

    Article  CAS  Google Scholar 

  20. K. Binder: in Statics and Dynamics of Alloy Phase Transformations, P.E. Turchi and A. Gonis, eds., Plenum Press, New York, NY, 1994, pp. 467–93.

    Google Scholar 

  21. F. Schmid and K. Binder: in Metallic Alloys: Experimental and Theoretical Perspectives. J.S. Faulkner and R.G. Jordan, eds., Kluwer Academic Publisher, Dordrecht, The Netherlands, 1994, pp. 261–70.

    Google Scholar 

  22. Applications of the Monte Carlo Methods in Statistical Physics, K. Binder, ed., Springer-Verlag, Berlin, 1984.

    Google Scholar 

  23. The Monte Carlo Method in Condensed Matter Physics, K. Binder, ed., Springer-Verlag, Berlin, 1992.

    Google Scholar 

  24. P. Oramus, R. Kozubski, M.C. Cadeville, V. Pierron-Bohnes, and W. Pfeiler: Mater. Sci. Eng. A, 1997, vols. 239A–240A, pp.777–83

    Google Scholar 

  25. E. Kentzinger, M. Zemirli, V. Pierron-Bohnes, M.C. Cadeville, H. Bouzar, M. Benakki, and M.A. Khan: Mater. Sci. Eng. A, 1997, vols. 239A–240A, pp. 784–89.

    Google Scholar 

  26. W. Schweika and H.G. Haubold: Phys. Rev., 1988, vol. B37, pp. 9240–48.

    Google Scholar 

  27. W. Schweika: in Structure and Phase Stability of Alloys, J.L. Moran-Lopez, F. Mejia-Lira, and J.M. Sanchez, eds., Plenum Press, New York, NY, 1992, pp. 53–64.

    Google Scholar 

  28. J.W.D. Connolly and A.R. Williams: Phys. Rev. B, 1983, vol. 27, pp. 5169–72.

    Article  CAS  Google Scholar 

  29. Z.W. Lu, S.H. Wei, and A. Zunger: Phys. Rev. Lett., 1991, vol. 66, pp. 1753–56.

    Article  CAS  Google Scholar 

  30. A. Zunger: in Statics and Dynamics of Alloy Phase Transformations, P.E.A. Turchi and A. Gonis, eds., NATO ASI Series B: Physics, Plenum Press, New York, NY, 1994, vol. 319, pp. 361–420.

    Google Scholar 

  31. F. Ducastelle and F. Gaultier: J. Phys. F: Met. Phys., 1976, vol. F6, pp. 2039–62.

    Article  Google Scholar 

  32. A. Gonis, A.J. Freeman, D.M. Nicholson, G.M. Stocks, P. Turchi, and X.G. Zhang: Phys. Rev., 1987, vol. B36, pp. 4630–46.

    Google Scholar 

  33. G.M. Stocks, D.M.C. Nicholson, W.A. Sheiton, B.L. Gyorffy, F.J. Pinski, D.D. Johnson, J.B. Staunton, B. Ginatempo, P.E.A. Turchi, and M. Sluiter: in Statics and Dynamics of Alloys Phase Transformations, P.E.A. Turchi and A. Gonis, eds., NATO ASI Series B: Physics, Plenum Press, New York, NY, 1994, vol. 319, pp. 305–59.

    Google Scholar 

  34. B.L. Gyorffy and G.M. Stocks: Phys. Rev. Lett., 1983, vol. 50, pp. 374–77.

    Article  CAS  Google Scholar 

  35. W.M.C. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal: Rev. Mod. Phys., 2001, vol. 73, pp. 33–83.

    Article  CAS  Google Scholar 

  36. Monte Carlo Methods in Statistical Physics, K. Binder, ed., Springer-Verlag, Berlin, 1979, vol. 7.

    Google Scholar 

  37. Applications of the Monte Carlo Methods in Statistical Physics, K. Binder, ed., Springer-Verlag, Berlin, 1987, vol. 36.

    Google Scholar 

  38. F. Ducastelle: Order and Phase Stability in Alloys, North Holland, Amsterdam, 1991.

    Google Scholar 

  39. A.O. Mekhrabov, M.V. Akdeniz, and M.M. Arer: Acta Mater., 1997, vol. 45 (3), pp. 1077–83.

    Article  CAS  Google Scholar 

  40. M.V. Akdeniz and A.O. Mekhrabov: Acta Mater., 1998, vol. 46 (4), pp. 1185–92.

    Article  CAS  Google Scholar 

  41. A.O. Mekhrabov and M.V. Akdeniz: Acta Mater., 1999, vol. 47 (7), pp. 2067–75.

    Article  CAS  Google Scholar 

  42. E.Z. Ising: Z. Phys., 1925, vol. 31, p. 253.

    Article  CAS  Google Scholar 

  43. F. Schmid and K. Binder: J. Phys.: Condens. Matter. 1992, vol. 4, pp. 3569–88.

    Article  CAS  Google Scholar 

  44. S.K. Bose, J. Kudrnovsky, V. Drchal, O. Jepsen, and O.K. Andersen: Mater. Sci. Eng. B, 1996, vol. 37, pp. 237–41.

    Article  Google Scholar 

  45. J.A. Plascak, L.E. Zamora, and G.A.P. Alcazar: Phys. Rev. B, 2000, vol. 61, pp. 3188–91.

    Article  CAS  Google Scholar 

  46. V.M. Danilenko, D.R. Rizdvyanechkiy, and A.A. Smirnov: Fiz. Met. Metalloved., 1963, vol. 15, pp. 194–202.

    CAS  Google Scholar 

  47. V.M. Danilenko, D.R. Rizdvyanechkiy and A.A. Smirnov: Fiz. Met. Metalloved., 1963, vol. 16, pp. 3–12.

    CAS  Google Scholar 

  48. D.R. Rizdvyanechkiy: Metallofizikal, 1977, No. 68, pp. 31–37.

  49. Z.A. Matysina, A.O. Mekhrabov, Z.M. Babaev and S.Y. Zaginaichenko: J. Phys. Chem. Solids, 1987, vol. 48, pp. 419–23.

    Article  CAS  Google Scholar 

  50. A.A. Katsnelson, A.O. Mekhrabov, and V.M. Silonov: Fiz. Met. Metalloved., 1981, vol. 52, pp. 661–63.

    CAS  Google Scholar 

  51. A.O. Mekhrabov and M. Doyama: Phys. Status Solidi (B), 1984, vol. 126, pp. 453–58.

    CAS  Google Scholar 

  52. A. Taylor and R.W. Jones: J. Phys. Chem. Solids, 1958, vol. 6, pp. 16–37.

    Article  CAS  Google Scholar 

  53. A.O.E. Animalu and V. Heine: Phil. Mag., 1965, vol. 12, p. 1249.

    CAS  Google Scholar 

  54. A.O.E. Animalu: Phys. Rev. B, 1973, vol. 8, pp. 3542–54.

    Article  CAS  Google Scholar 

  55. A.O.E. Animalu: Phys. Rev. B, 1973, vol. 8, pp. 3555–62.

    Article  CAS  Google Scholar 

  56. J. Hubbard: Proc. R. Soc. (London), 1957, vol. A 240, p. 359.

    Google Scholar 

  57. J. Hubbard: Proc. R. Soc. (London), 1957, vol. A 243, p. 336.

    Google Scholar 

  58. L.J. Sham: Proc. R. Soc. (London), 1965, vol. A 283, p. 33

    Google Scholar 

  59. A.O.E. Animalu: Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  60. J.A. Moriarty: Phys. Rev. B, 1977, vol. 16, p. 2537.

    Article  CAS  Google Scholar 

  61. J.A. Moriarty: Phys. Rev. B, 1982, vol. 26, pp. 1754–80.

    Article  CAS  Google Scholar 

  62. J.A. Moriarty: Phys. Rev. B, 1988, vol. 38, pp. 3199–3231.

    Article  CAS  Google Scholar 

  63. J.A. Moriarty: Phys. Rev. B, 1990, vol. 42, pp. 1609–28.

    Article  Google Scholar 

  64. K.M. Ho, S.G. Louie, J.R. Chelikowsky, and M.L. Cohen: Phys. Rev. B, 1977, vol. 15, pp. 1755–59.

    Article  CAS  Google Scholar 

  65. A. Zunger and M.L. Cohen: Phys. Rev. B, 1978, vol. 18, pp. 5449–72.

    Article  CAS  Google Scholar 

  66. A. Zunger and M.L. Cohen: Phys. Rev. B, 1979, vol. 19, pp. 568–82.

    Article  CAS  Google Scholar 

  67. G.P. Kerker, K.M. Ho, and M.L. Cohen: Phys. Rev. B, 1978, vol. 18, pp. 5473–83.

    Article  CAS  Google Scholar 

  68. L.I. Yastrebov and A.A. Katsnelson: Foundations of One-Electron Theory of Solids, Mir Publisher, Moscow, 1987.

    Google Scholar 

  69. P.A. Schultz and J.W. Davenport: J. Alloys Compounds, 1993, vol. 197, pp. 229–42.

    Article  CAS  Google Scholar 

  70. A.A. Katsnelson, V.M. Silonov, and M.M. Khruschev: Fiz. Tverd. Tela, 1977, vol. 19, p. 691.

    Google Scholar 

  71. A.A. Katsnelson, V.M. Silonov, and M.M. Khruschev: Fiz. Tverd. Tela, 1978, vol. 20, p. 2812.

    CAS  Google Scholar 

  72. A.A. Katsnelson, A.O. Mekhrabov, and V.M. Silonov: Fiz. Met. Metaloved., 1976, vol. 42(2), pp. 278–83.

    Google Scholar 

  73. A.A. Katsnelson, A.O. Mekhrabov, and V.M. Silonov: Fiz. Met. Metaloved., 1978, vol. 45(1), pp. 33–37.

    Google Scholar 

  74. A.A. Katsnelson, A.O. Mekhrabov, and V.M. Silonov: Fiz. Met. Metaloved., 1979, vol. 47(5), pp. 993–97.

    CAS  Google Scholar 

  75. P.S. Rudman: Acta Metall., 1960, vol. 8, pp. 321–327.

    Article  CAS  Google Scholar 

  76. J.M. Cowley: J. Appl. Phys., 1950, vol. 21, pp. 24.

    Article  CAS  Google Scholar 

  77. B.E. Warren, B.L. Averbach, and B.W. Roberts: J. Appl. Phys., 1951, vol. 22, pp. 1493–1496.

    Article  CAS  Google Scholar 

  78. Design and Analysis of Experiments, D.C. Montgomery, ed., John Wiley, New York, NY, 1976.

    Google Scholar 

  79. M.M. Arer: Master’s Thesis, Middle East Technical University, Ankora, 1996.

    Google Scholar 

  80. P.R. Swann, W.R. Duff, and R.M. Fisher: Metall. Trans., 1972, vol. 3, p. 409.

    CAS  Google Scholar 

  81. A. Lawley and R.W. Cahn: J. Phys. Chem. Solids, 1961, vol. 20, pp. 204–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekhrabov, A.O., Akdeniz, M.V. Modeling of the atomic ordering processes in Fe3Al intermetallics by the monte carlo simulation method combined with electronic theory of alloys. Metall Mater Trans A 34, 721–734 (2003). https://doi.org/10.1007/s11661-003-0107-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0107-z

Keywords

Navigation