Skip to main content
Log in

Evolution of strain-induced microstructure and texture in commercial aluminum sheet under balanced biaxial stretching

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of surface topography and crystallographic texture was investigated under balanced biaxial stretching in sheets of the aluminum alloy 5052-H32. Two different lots of material, with an initial nominal thickness of 1 mm, were tested in the as-received condition. Samples with increasing levels of balanced biaxial strain were deformed using a modified Marciniak in-plane stretching test. In general, the sheet materials were microstructurally and crystallographically anisotropic. Between the two lots, the initial microstructure and mechanical properties were found to be equivalent; however, the sheet texture was appreciably different. This latter variation was observed to have an effect on the additional roughening of the surface subsequent to deformation. For a given lot of material, the surface roughness was found to be proportional to the magnitude of the strain. However, while the roughening rates for the two lots were comparable, the lot having a stronger initial {220} texture component was found to roughen to a higher degree. Corresponding changes in the sheet texture were observed to have two regimes as a function of the strain level. In the first regime, typically, for strains (ɛ) up to 0.05, the orientations were found to rotate quickly away from the initial cube {001}〈100〉 orientation observed in the as-received sheet toward positions along the α fiber. Above a strain level of 0.05, the {220} texture component continued to increase with deformation, but at a decreasing rate up to failure of the sheet. The difference in the grain rotation rates observed did not appear to have an effect on the surface roughening, as the relative change of the crystallographic orientations with increasing plastic strain was similar for both heats of material. Instead, it is believed that localized grain or grain-grouping interactions may play a more important role in the surface roughening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Becker: Acta Mater., 1998, vol. 46 (4), pp. 1385–1401.

    Article  CAS  Google Scholar 

  2. C. Guangnan, S. Huan, H. Shiguang, and B. Baudelet: Mater. Sci. Eng., 1990, vol. 128A, pp. 33–38.

    Google Scholar 

  3. P.F. Thomson and P.U. Nayak: Int. J. Mach. Tool Des. Res., 1980, vol. 20, pp. 78–86.

    Article  Google Scholar 

  4. Y.Z. Dai and F.P. Chiang: Trans. ASME, 1992, vol. 114, pp. 432–38.

    CAS  Google Scholar 

  5. A. Azushima and M. Miyagawa: J. Jpn. Soc. Technol. Plasticity, 1986, vol. 27, pp. 1261–67.

    Google Scholar 

  6. D.V. Wilson, W.T. Roberts, and P.M.B. Rodrigues: Metall. Trans. A, 1981, vol. 12A, pp. 1595–1602.

    Google Scholar 

  7. K. Osakada and M. Oyane: Bull. JSME, 1971, vol. 14 (68), pp. 171–77.

    CAS  Google Scholar 

  8. M. Fukuda, K. Yamaguchi, N. Takakura, and Y. Sakano: J. Jpn. Soc. Technol. Plasticity, 1974, vol. 15, p. 994.

    Google Scholar 

  9. H. Kaga: Ann. Coll. Int. Etud. Sci. Tech. Prod. Mec., 1971, vol. 20, pp. 55–67.

    Google Scholar 

  10. N.J. Wittridge and R.D. Knutsen: Mat. Sci. Eng., 1999, vol. 269A, pp. 205–16.

    Google Scholar 

  11. W.R.D. Wilson and W. Lee: Proc. 1st Int. Conf. on Tribology in Manufacturing Processes ’97, Gifu, Japan, 1997, pp. 71–76.

  12. A.J. Beaudoin, J.D. Bryant, and D.A. Korzekwa: Metall. Trans., 1998, vol. 29A, pp. 2323–32.

    Article  CAS  Google Scholar 

  13. D.V. Wilson, W.T. Roberts, and P.M.B. Rodrigues: Metall. Trans. A, 1981, vol. 12A, pp. 1603–11.

    Google Scholar 

  14. R. Becker and S. Panchanadeeswaran: Acta Mater., 1995, vol. 43 (7), pp. 2701–19.

    Article  CAS  Google Scholar 

  15. Z. Maciniak and K. Kuczynski: Int. J. Mech. Sci., 1967, vol. 9, pp. 609–20.

    Article  Google Scholar 

  16. T.J. Foecke, S.W. Banovic, and R.J. Fields: JOM, 2001, vol. 53 (2), pp. 27–30.

    CAS  Google Scholar 

  17. C.S. Choi, H.J. Prask, and S.F. Trevino: J. Appl. Crystallogr., 1979, vol. 12, pp. 327–331.

    Article  CAS  Google Scholar 

  18. M.D. Vaudin: Proc. 12th Int. Conf. on Textures of Materials, J.A. Szpunar, in NRC Research Press, Ottawa, 1999, pp. 186–91.

    Google Scholar 

  19. M.D. Vaudin, M.W. Rupich, M. Jowett, G.N. Riley, and J.F. Bingert: J. Mater. Res., 1998, vol. 13 (10), pp. 2910–19.

    CAS  Google Scholar 

  20. M.D. Vaudin: TexturePlus, http://www.ceramics.nist.gov/webbook/TexturePlus/texture.htm, 2000.

  21. P.R. Dawson and A.J. Beaudoin: JOM, 1997, vol. 49 (9), pp. 34–41.

    CAS  Google Scholar 

  22. X.Y. Wen and W.B. Lee: Scripta Mater., 2000, vol. 43 (1), pp. 1–7.

    Article  CAS  Google Scholar 

  23. X.M. Cheng, Y. Liu, and J.G. Morris: Alum. Trans., 1999, vol. 1 (1), pp. 103–08.

    Article  CAS  Google Scholar 

  24. J.J. Park: J. Mater. Proc. Technol., 1999, vol. 87 (1–3), pp. 146–53.

    Article  Google Scholar 

  25. B. Ren, J.G. Morris, and A.J. Beaudoin: JOM, 1996, vol. 48 (6), pp. 22–25.

    CAS  Google Scholar 

  26. L.S. Toth, J. Hisch, and P. VanHoutte: Int. J. Mech. Sci., 1996, vol. 38 (10), pp. 1117–26.

    Article  Google Scholar 

  27. S. Panchanadeeswaran and D.P. Field: Acta Mater., 1995, vol. 43 (4), pp. 1683–92.

    Article  CAS  Google Scholar 

  28. Y. Zhou and K.W. Neale: Acta Mater., 1994, vol. 42 (6), pp. 2175–89.

    Article  CAS  Google Scholar 

  29. Y. Zhou and K.W. Neale: Textures Microstr., 1993, vol. 22, pp. 87–111.

    Article  Google Scholar 

  30. J.C. Starczan, D. Ruer, and R. Baro: Proc. ICOTOM 6, Iron and Steel Institute, Tokyo, 1981, pp. 308–316.

    Google Scholar 

  31. In Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ed., ASM, Metals Park, OH, 1984, pp. 64–66.

    Google Scholar 

  32. S.S. Hecker: J. Eng. Mater.-Trans. ASME, 1975, vol. 97 (1), pp. 66–73.

    CAS  Google Scholar 

  33. A.K. Ghosh and S.S. Hecker: Metall. Trans., 1974, vol. 5, pp. 2161–64.

    CAS  Google Scholar 

  34. M. Huang and J.C. Gerdeen: in Computer Applications in Shaping and Forming of Materials, M.Y. Demeri, ed., TMS, Warrendale, PA, 1992, pp. 239–49.

    Google Scholar 

  35. J.C. Williams, A.W. Thompson, and R.G. Baggerly: Scripta Metall., 1974, vol. 8, pp. 625–30.

    Article  CAS  Google Scholar 

  36. D.V. Wilson and O. Acselrad: Proc. IDDRG 10th Biennial Congr., Portcullis Press, Redhill, UK, 1978, vol. 155.

    Google Scholar 

  37. T. Kobayashi, K. Murata, and H. Ishigaki: J. Jpn. Soc. Technol. Plasticity, 1969, vol. 10, p. 793.

    Google Scholar 

  38. S. Kohara: Proc. ICOTOM 6, Iron and Steel Institute, Tokyo, 1981, pp. 300–07.

    Google Scholar 

  39. C.Y. Tang and W.H. Tai: J. Mater. Proc. Technol., 2000, vol. 99, pp. 135–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banovic, S.W., Foecke, T. Evolution of strain-induced microstructure and texture in commercial aluminum sheet under balanced biaxial stretching. Metall Mater Trans A 34, 657–671 (2003). https://doi.org/10.1007/s11661-003-0100-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0100-6

Keywords

Navigation