Skip to main content
Log in

The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The work-hardening characteristics of metals deeply affect the analytical and numerical analyses of their forming processes and especially the end mechanical properties of the products manufactured. The effects of strain, strain rate, and temperature on work hardening have received wide attention in the literature, but the role of the strain path has been far less studied, except for sheet-metal forming. Strain-path effects seem to have never been analyzed for bulk-forming processes, such as axisymmetric drawing. In the present work, drawn bars were considered as composed of concentric layers strained along varying strain paths. The tensile von Mises effective stress, effective-strain curves of two layers and of the full cross section of the drawn material, were experimentally determined. The flow behavior of these regions was compared to that resulting from pure monotonic-tensile processing. The AISI 420 and 304 stainless steels revealed a strain path and a material effect on their work-hardening characteristics. Higher or lower hardening rates were observed in axisymmetric drawing, as compared to pure tension. These phenomena were interpreted by considering the dislocation arrangements caused by initial drawing straining and their subsequent restructuring, associated with the strain-path change represented by tension after drawing. The analytical and numerical analyses of the tensile behavior of metals following axisymmetric drawing must consider the strain-path effects on the constitutive equations laws and on the hardening behavior of the material. The redundant deformation factor in axisymmetric drawing (φ) plays a central role in the analysis of the process and on the prediction of the mechanical properties of the final products. This parameter was evaluated considering (a) the strain distribution in the bar cross section caused by drawing or (b) the mechanical properties of the drawn bars. The comparison of the results from these two approaches allowed an unexplained interpretation of a material effect on this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Wagoner: Metall. Trans. A, 1982, vol. 13A, pp. 1491–1500.

    Google Scholar 

  2. J.V. Laukonis and A.K. Ghosh: Metall. Trans. A, 1978, vol. 9A, pp. 1849–56.

    CAS  Google Scholar 

  3. A.K. Ghosh and W.A. Backofen: Metall. Trans. A, 1973, vol. 4A, pp. 1113–23.

    Google Scholar 

  4. D.V. Wilson, M. Zandrahimi, and W.T. Roberts: Acta Metall., 1990, vol. 38, pp. 215–26.

    Article  CAS  Google Scholar 

  5. M. Zandrahimi, S. Platias, D. Price, D. Basret, W.T. Roberts, and D.V. Wilson: Metall. Trans. A, 1989, vol. 20A, pp. 2471–82.

    CAS  Google Scholar 

  6. D.J. Lloyd and H. Sang: Metall. Trans. A, 1979, vol. 10A, pp. 1767–72.

    CAS  Google Scholar 

  7. J.V. Fernandes and M.F. Vieira: Metall. Trans. A, 1997, vol. 28A, pp. 1169–79.

    Article  CAS  Google Scholar 

  8. E.V. Nesterova, B. Bacroix, and C. Teodosiu: Mater. Sci. Eng. A, 2001, vol. A309–310, pp. 495–99.

    Google Scholar 

  9. B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, P. Aernoudt and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1607–19.

    Article  CAS  Google Scholar 

  10. B. Peeters, B. Bacroix, C. Teodosiu, P. Van Houtte, and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1621–32.

    Article  CAS  Google Scholar 

  11. E.C.S. Corrêa, M.T.P. Aguilar, W.A. Monteiro, and P.R. Cetlin: J. Mater. Sci. Lett., 2000, vol. 19, pp. 779–81.

    Article  Google Scholar 

  12. W.A. Backofen: Deformation Processing, 1st. ed., Addison-Wesley, Reading, MA., 1972.

    Google Scholar 

  13. M.P. Riendeau, M.C. Mataya, and D.K. Matlock: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 363–75.

    Article  CAS  Google Scholar 

  14. B. Avitzur: Metal Forming: Processes and Analysis. 1st ed, McGraw-Hill, New York, NY, 1968.

    Google Scholar 

  15. R.M. Caddel and A.G. Atkins: Trans. ASME B-J. Eng. Ind., 1968, pp. 411–19.

  16. A.P. Green and R. Hill: J. Mech. Phys. Sol., 1952, vol. 1, pp. 31–36.

    Article  Google Scholar 

  17. L. Sadok, J. Luksza, J. Majta, and A. Skoliszewski: J. Mater. Proc. Technol., 1994, vol. 45, pp. 293–98.

    Article  Google Scholar 

  18. L. Sadok, J. Luksza, M. Packo, and M. Buerdek: J. Mater. Proc. Technol., 1994, vol. 45, pp. 305–10.

    Article  Google Scholar 

  19. R.B. Gifford, A.R. Bandar, W.Z. Misiolek, and J.P. Coulter: Proc. 8th Int. Conf. on Metal Forming, Kraków, Poland, 2000, pp. 567–77.

    Google Scholar 

  20. Y. Strauwen and E. Aernoudt: Acta Metall., 1987, vol. 35, pp. 1029–36.

    Article  Google Scholar 

  21. W.J.M. Tegart: Elements of Mechanical Metallurgy, 1st ed., Macmillan Company, New York, NY, 1966.

    Google Scholar 

  22. W.F. Hosford and R.M. Caddel: Metal Forming: Mechanics and Metallurgy, 2nd ed., Prentice-Hall, London, 1993.

    Google Scholar 

  23. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 1987, p. 625.

    Google Scholar 

  24. N.H. Polakowski and E.J. Ripling: Strength and Structure of Engineering Materials, 1st ed., Prentice-Hall, Englewood Cliffs, NJ, 1966, pp. 481–82.

    Google Scholar 

  25. G.E. Dieter: Mechanical Metallurgy, 1st ed., McGraw-Hill, New York, NY, 1966, p. 418.

    Google Scholar 

  26. Metals Handbook, ASM, Cleveland, OH, 1948, p. 241.

  27. T.A. Trozera: Trans. ASME-J. Eng. Mater. Technol., 1964, vol. 7, pp. 309–23.

    Google Scholar 

  28. G. Krauss: Steels: Heat Treatment and Processing Principles, 2nd. ed., ASM INTERNATIONAL, Materials Park, OH, 1999.

    Google Scholar 

  29. D.V. Wilson and P.S. Bate: Acta Metall. Mater., 1994, vol. 42, pp. 1099–1111.

    Article  CAS  Google Scholar 

  30. A.B. Lopes, F. Barlat, J.J. Gracio, J.F.F. Duarte, and E.F. Rauch: Int. J. Plast., 2003, vol. 15, pp. 1–22.

    Article  Google Scholar 

  31. N.H. Polakowski and A. Palchoudhuri: Proc. ASTM, 1954, vol. 54, pp. 701–16.

    CAS  Google Scholar 

  32. S.N. Buckley and K.M. Entwistle: Acta Metall., 1956, vol. 4, pp. 352–61.

    Article  CAS  Google Scholar 

  33. S. Asgari: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1781–95.

    Article  Google Scholar 

  34. S.R. Kalidindi: Int. J. Plas., 2001, vol. 17, pp. 837–60.

    Article  CAS  Google Scholar 

  35. W.P. Longo and R.E. Reed-Hill: Rev. Circulo Militar, 1974, vol. 71, pp. 43–49.

    Google Scholar 

  36. R.M. Caddel and A.G. Atkins: Trans. ASME B-J. Eng. Ind., 1969, pp. 664–72.

  37. R. Hill and S.J. Tupper: J. Iron Steel Inst., 1948, vol. 158, pp. 353–59.

    Google Scholar 

  38. P.R. Cetlin: J. Eng. Mater. Technol., 1987, vol. 109, pp. 272–75.

    Google Scholar 

  39. P.R. Cetlin and J.L.N. Nicolas: J. Eng. Mater. Technol. 1987, vol. 109, pp. 276–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetlin, P.R., Corrêa, E.C.S. & Aguilar, M.T.P. The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing. Metall Mater Trans A 34, 589–601 (2003). https://doi.org/10.1007/s11661-003-0094-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0094-0

Keywords

Navigation