Skip to main content
Log in

The evolution of annealing textures in 90 Pct drawn copper wire

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An electrolytic copper rod was drawn in 24 passes to a 90 pct reduction in area and subsequently annealed under various conditions. The global texture of the drawn wire, as measured by X-ray methods, showed a fiber texture approximated by a strong 〈111〉 and a weak 〈100〉 component. However, its microtexture, as measured by electron backscattered diffraction (EBSD), indicated that the major 〈111〉+minor 〈100〉 duplex fiber texture was dominant only in the center region, while a relatively diffuse texture developed with a somewhat higher density of orientations having a 〈11w〉//wire axis in the middle and surface regions. The inhomogeneous texture in the as-deformed wire gave rise to an inhomogeneous microstructure and texture after annealing. When annealed at 300 °C or 600 °C for 3 hours, the wire developed a duplex fiber texture consisting of major 〈100〉+minor 〈111〉 components in the center region, a strong 〈100〉 fiber texture in the middle region, and a weak texture consisting of 〈111〉 and 〈100〉 components with the 〈111〉 component being slightly stronger in the surface region. When the drawn wire was annealed at the high temperature of 700 °C, the texture at short annealing times was similar to that of the wire annealed at the lower temperatures of 300 °C and 600 °C for 3 hours, but prolonged annealing gave rise to a texture ranging from the 〈111〉 to 〈112〉 components due to abnormal grain-growth that started in the surface region. The recrystallization texture consisting of the major 〈100〉+minor 〈111〉 components was explained by the strain-energy-release maximization (SERM) model, in which the recrystallization texture is determined such that the absolute maximum principal stress direction due to dislocations in the deformed state is along the minimum elastic-modulus direction in recrystallized grains. On the other hand, the abnormal grain-growth texture was attributed to grain-boundary mobility differences between differently oriented grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mecking: in Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, H.-R. Wenk, eds., Academic Press, Orlando, FL, 1985, p. 277.

    Google Scholar 

  2. A.D. Rollett and S.I. Wright: in Texture and Anisotropy, U.F. Kocks, C.N. Tomé, and H.R. Wenk, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, p. 227.

    Google Scholar 

  3. G. Linsen, H.D. Mengelberg, and H.P. Stüwe: Z. Metallkd., 1964, vol. 55, p. 600.

    Google Scholar 

  4. N. Inakazu, Y. Kaneno, and H. Inoue: Mater. Sci. Forum, 1994, vols. 157–162, p. 715.

    Google Scholar 

  5. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 1995.

    Google Scholar 

  6. F.F. Kraft, U. Chakkingal, G. Baker, and R.N. Wright: J. Mater. Process. Technol., 1996, vol. 60, p. 171.

    Article  Google Scholar 

  7. E. Grant, D. Juul Jensen, B. Ralph, and N. Hansen: 7th Int. Conf. on Texture of Materials, C.M. Brakman, P. Jongenburger, and E.J. Mittenmeijer, eds., Netherlands Society for Materials Science, Noordwijkerhout, The Netherlands, 1984, p. 239.

    Google Scholar 

  8. I.L. Dillamore and W.T. Roberts: Metall. Rev., 1965, vol. 10, pp. 271–380.

    CAS  Google Scholar 

  9. C.S. Barrett and T.B. Massalski: Structure of Metals, 3rd ed., McGraw-Hill, New York, NY, 1966, pp. 569–70.

    Google Scholar 

  10. H.J. Shin, H.-T. Jeong, and D.N. Lee: Mater. Sci. Eng., 2000, vol. A279, p. 244.

    CAS  Google Scholar 

  11. K. Rajan and R. Petkie: Mater. Sci. Eng., 1998, vol. A257, p. 185.

    CAS  Google Scholar 

  12. H. Inoue, N. Nakazu, and H. Yamamoto: 6th Int. Conf. on Texture of Materials, S. Nagashima, ed., The Iron and Steel Institute of Japan, Tokyo, 1981, p. 591.

    Google Scholar 

  13. P.A. Beck and P.R. Sperry: J. Appl. Phys., 1950, vol. 21 p. 150.

    Article  CAS  Google Scholar 

  14. S.P. Bellier and R.D. Doherty: Acta Metall., 1977, vol. 25, p. 521.

    Article  CAS  Google Scholar 

  15. D.N. Lee: Scripta Metall. Mater., 1995, vol. 32, p. 1689.

    Article  CAS  Google Scholar 

  16. D.N. Lee: Met. Mater., 1999, vol. 5, p. 401.

    Article  CAS  Google Scholar 

  17. D.N. Lee: Int. J. Mech. Sci., 2000, vol. 42, p. 1645.

    Article  Google Scholar 

  18. H. Park and D.N. Lee: Mater. Sci. Forum, 2002, vol. 408–412, p. 637.

    Article  Google Scholar 

  19. S. Matthies: Phys. Status Solidi, 1980, vol. 101, p. 111.

    Google Scholar 

  20. Y.B. Park, D.N. Lee, and G. Gottstein: Acta Mater., 1998, vol. 46, p. 3371.

    Article  CAS  Google Scholar 

  21. D.N. Lee: J. Mater. Process. Technol., 2001, vol. 117, p. 307.

    Article  CAS  Google Scholar 

  22. S.-H. Hong and D.N. Lee: J. Eng. Mater. Technol. (ASME JEMT), 2002, vol. 124, p. 13.

    Article  CAS  Google Scholar 

  23. J.-H. Choi, S. Kang, and D.N. Lee: J. Mater. Sci., 2000, vol. 35, p. 4055.

    Article  CAS  Google Scholar 

  24. I. Kim and S.K. Lee: Textr. Microstr., 2000, vol. 34, p. 159.

    Article  CAS  Google Scholar 

  25. M. Hillert: Acta Metall., 1965, vol. 13, p. 227.

    Article  CAS  Google Scholar 

  26. L.S. Shvindlerman, G. Gottstein, D.A. Molodov, and V.G. Suraeva: 1st Joint Int. Conf. on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, p. 177.

    Google Scholar 

  27. D.A. Porter and K.E. Eastering: Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992, p. 130.

    Google Scholar 

  28. J. Harase, R. Shimizu, and D.J. Dingley: Acta Metall. Mater., 1991, vol. 39, p. 763.

    Article  CAS  Google Scholar 

  29. R.D. Doherty et al.: Mater. Sci. Eng., 1997, vol. A238, p. 219.

    CAS  Google Scholar 

  30. Y. Hayakawa, M. Muraki, and J.A. Szpunar: Acta Mater., 1998, vol. 46, p. 1063.

    Article  CAS  Google Scholar 

  31. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals, CRC Press, Boca Raton, FL, 1999, p. 203.

    Google Scholar 

  32. D.A. Molodov: 1st Joint Int. Conf. on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, p. 21.

    Google Scholar 

  33. A.N. Aleshin, V.Y. Aristov, B.S. Bokstein, and L.S. Shvindlerman: Phys. Status Solidi, 1978, vol. A45, p. 359.

    Google Scholar 

  34. F. Czerwinski, H. Li, M. Megret, and J.A. Szpunar: Scripta Metall. Mater., 1997, vol. 37, p. 1967.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Lee, D.N. The evolution of annealing textures in 90 Pct drawn copper wire. Metall Mater Trans A 34, 531–541 (2003). https://doi.org/10.1007/s11661-003-0089-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0089-x

Keywords

Navigation