Metallurgical and Materials Transactions A

, Volume 33, Issue 8, pp 2649–2658 | Cite as

Explicit finite element method simulation of consolidation of monolithic and composite powders

  • X. J. Xin
  • P. Jayaraman
  • G. Jiang
  • R. H. Wagoner
  • G. S. Daehn


The explicit finite element method (FEM) has been used to simulate the compaction of monolithic and composite powder compacts. It is concluded that with the proper FEM model and appropriate loading speed, explicit FEM can be used to simulate powder compaction with satisfactory accuracy. The simulated pressure-density curves for four periodic powders are in reasonable agreement with experiments using model powders consisting of rods. The effects of the friction coefficient, Poisson’s ratio, and hardening exponent on densification are investigated. Powder compacts consisting of particles with larger Poisson’s ratio, larger interparticle friction, and larger hardening exponent are more diffcult to consolidate in monotonic compaction. Compaction of multiparticle arrays is also simulated to assess the effects of packing randomness and particle rearrangement. The results reveal that local packing details affect the compaction behavior and, in general, the more heterogeneous the powder mixture is, the more difficult it is to consolidate the powder compact. Networking of hard particles significantly increases the densification resistance.


Material Transaction Hard Particle Finite Element Method Simulation Soft Particle Periodic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L. Erich: Int. J. Powder Met., 1987, vol. 23, pp. 45–54.Google Scholar
  2. 2.
    A.R. Hyde: Mater. Design, 1990, vol. 11, pp. 30–36.CrossRefGoogle Scholar
  3. 3.
    A.R. Akisanya, A.C.F. Cocks, and N.A. Fleck: J. Mech. Phys. Solids, 1994, vol. 42, pp. 1067–85.CrossRefGoogle Scholar
  4. 4.
    N.A. Fleck: J. Mech. Phys. Solids, 1995, vol. 43, pp. 1409–31.CrossRefGoogle Scholar
  5. 5.
    R.W. Heckel: Trans. TMS-AIME, 1961, vol. 221, pp. 671–75.Google Scholar
  6. 6.
    A. Schofield and C.P. Wroth: Critical State Soil Mechanics, McGraw-Hill, New York, NY, 1968.Google Scholar
  7. 7.
    A.S. Helle, K.E. Easterling, and M.F. Ashby: Acta Metall., 1985, vol. 33, pp. 2163–74.CrossRefGoogle Scholar
  8. 8.
    A.L. Gurson: Advances in Powder Metallurgy and Particulate Materials, Proc. 1992 Int. Conf. Exhib. on Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1992, vol. 2, pp. 133–45.Google Scholar
  9. 9.
    S. Brown and G. Abou-Chedid: J. Mech. Phys. Solids, 1994, vol. 42, pp. 383–99.CrossRefGoogle Scholar
  10. 10.
    A.R. Akisanya, A.C.F. Cocks, and N.A. Fleck: Int. J. Mech. Sci., 1997, vol. 39, pp. 1315–24.CrossRefGoogle Scholar
  11. 11.
    I. Sridhar and N.A. Fleck: Acta Mater., 2000, vol. 48, pp. 3341–52.CrossRefGoogle Scholar
  12. 12.
    S. Shima and M. Oyane: Int. J. Mech. Sci., 1976, vol. 18, pp. 285–91.CrossRefGoogle Scholar
  13. 13.
    S.B. Brown and G.G.A. Weber: Proc. 1988 Int. Powder Metallurgy Conf., American Powder Metallurgy Institute, Princeton, NJ, 1988, vol. 18, pp. 465–76.Google Scholar
  14. 14.
    A. Casagranda, J. Xu, A.G. Evans, and R.M. McMeeking: J. Am. Ceram. Soc., 1996, vol. 795, pp. 1265–72.CrossRefGoogle Scholar
  15. 15.
    A.R. Akisanya and A.C.F. Cocks: J. Mech. Phys. Solids, 1995, vol. 43, pp. 605–36.CrossRefGoogle Scholar
  16. 16.
    N.A. Fleck, L.T. Kuhn, and R.M. McMeeking: J. Mech. Phys. Solids, 1992, vol. 40, pp. 1139–62.CrossRefGoogle Scholar
  17. 17.
    A.K. Bhattacharya and E. Arzt: Scripta Metall. Mater., 1993, vol. 28, pp. 395–400.CrossRefGoogle Scholar
  18. 18.
    F.F. Lange, L. Atteraas, F. Zok, and J.R. Porter: Acta Metall., 1991, vol. 39, pp. 209–19.CrossRefGoogle Scholar
  19. 19.
    J. Besson and A.G. Evans: Acta Metall. Mater., 1992, vol. 40, pp. 2247–55.CrossRefGoogle Scholar
  20. 20.
    E.K.H. Li and P.D. Funkenbusch: Metall. Trans. A, 1993, vol. 24A, pp. 1345–54.Google Scholar
  21. 21.
    C.-Y. Huang and G.S. Daehn: Acta Mater., 1996, vol. 44, pp. 1035–45.CrossRefGoogle Scholar
  22. 22.
    C.D. Turner and M.F. Ashby: Acta Mater., 1996, vol. 44, pp. 4521–30.CrossRefGoogle Scholar
  23. 23.
    C-Y. Huang and G.S. Daehn: Acta Mater., 1997, vol. 45, pp. 4283–96.CrossRefGoogle Scholar
  24. 24.
    A. Zavaliangos and A. Laptev: Acta Mater., 2000, vol. 48, pp. 2565–70.CrossRefGoogle Scholar
  25. 25.
    H.J. Feise: Powder Technol., 1998, vol. 98, pp. 191–200.CrossRefGoogle Scholar
  26. 26.
    R.E. Dutton and S.L. Semiatin: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1471–75.CrossRefGoogle Scholar
  27. 27.
    F. Saraber, G.G. Enstad, and G. Haaker: Powder Technol., 1991, vol. 64, pp. 183–90.CrossRefGoogle Scholar
  28. 28.
    I. Aydin, B.J. Briscoe, and K.Y. Sanliturk: Comput. Mater. Sci., 1994, vol. 3, pp. 55–68.CrossRefGoogle Scholar
  29. 29.
    S. Krishnaswami and J.R.L. Trasorras: in Net Shape Processing of Powder Materials, S. Krishnaswami, R.M. McMeeking, and J.R.L. Trasorras, eds., ASME, New York, NY 10016, 1995, AMD-vol. 216, pp. 89–98.Google Scholar
  30. 30.
    J. Xu and R.M. McMeeking: Int. J. Mech. Sci., 1995, vol. 37, pp. 883–97.CrossRefGoogle Scholar
  31. 31.
    R.W. Lewis and A.R. Khoei: Comput. Meth. Appl. Mech. Eng., 1998, vol. 159, pp. 291–328.CrossRefGoogle Scholar
  32. 32.
    R.J. Henderson, H.W. Chandler, A.R. Akisanya, H. Barber, and B. Moriarty: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 1121–28.CrossRefGoogle Scholar
  33. 33.
    G. Jiang, G.S. Daehn, J.J. Lannutti, Y. Fu, and R.H. Wagoner: Acta Mater., 2001, vol. 49, pp. 1471–77.CrossRefGoogle Scholar
  34. 34.
    G. Jiang, G.S. Daehn, and R.H. Wagoner: Scripta Mater., 2001, vol. 44, pp. 287–92.CrossRefGoogle Scholar
  35. 35.
    W. Wu, G. Jiang, R.H. Wagoner, and G.S. Daehn: Acta Mater., 2000 vol. 48, pp. 4323–30.CrossRefGoogle Scholar
  36. 36.
    G. Jiang, W. Wu, G.S. Daehn, and R.H. Wagoner: Acta Mater., 2000, vol. 48, pp. 4331–35.CrossRefGoogle Scholar
  37. 37.
    X.J. Xin, P. Jayaraman, G.S. Daehn and R.H. Wagoner: Kansas State University, Manhattan, KS, unpublished research, 2001.Google Scholar
  38. 38.
    John O. Hallquist: LS-DYNA Keywords Manual: Non-Linear Dynamic Analysis of Structures, version 9.50, Livermore Software Technology Corporation, Livermore, CA 94550, 1999.Google Scholar
  39. 39.
    A. Mattiasson, P. Strange, A. Thilderkvist, and A. Samuelsson: 5th Int. Conf. on NUMIFORM, New York, NY, 1995, pp. 115–24.Google Scholar
  40. 40.
    N. He and R.H. Wagoner: in NUMISHEET 96, J.K. Lee, G.L. Kinzel, and R.H. Wagoner, eds. The Ohio State University, Columbus, OH, 1996, pp. 308–15.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • X. J. Xin
    • 1
  • P. Jayaraman
    • 2
  • G. Jiang
    • 3
  • R. H. Wagoner
    • 4
  • G. S. Daehn
    • 4
  1. 1.the Mechanical and Nuclear Engineering DepartmentKansas State UniversityManhattan
  2. 2.LSI Logic Inc.Colorado Springs
  3. 3.Rudolph Technologies Inc.Flanders
  4. 4.the Materials Science and Engineering DepartmentOhio State UniversityColumbus

Personalised recommendations