Skip to main content
Log in

Reciprocal-space formulation and prediction of misfit accommodation in rigid and strained epitaxial systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Geometrical properties form a key aspect of any description of heteroepitaxial systems in which orientation, symmetry, and lattice parameters differ. An energetically founded epitaxial criterion, which is geometric in nature, for matching at a planar interface is derived from a generalization of the Frank-van der Merwe theory and the rigid models introduced by Reiss and van der Merwe. The criterion is most naturally formulated in reciprocal space as the matching of overgrowth and substrate reciprocal lattice vectors and is visualized with a construction analogous to the Ewald construction. Structure factors are introduced and account for rigid translations and the nonprimitive nature of substrate and overgrowth surface unit cells. This article focuses on the derivation of the epitaxial criterion and its consequences as a basis of a description of epitaxial configurations, pseudomorphism, and the parameters of dislocation or misfit vernier arrays, in terms of crystallographic conventions. The strength of the description is its general nature, as it is general and applicable to any combination of crystal symmetries or mismatch and can be used to predict, or interpret, interfacial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C. Frank and J.H. van der Merwe: Proc. R. Soc. A, 1949, vol. 198, p. 205–16; vol. 198, p. 216–25; vol. 200, p. 125–34; and vol. 201, p. 261–68.

    Google Scholar 

  2. M.W.H. Braun: Ph.D. Thesis, University of Pretoria, Pretoria, 1987.

    Google Scholar 

  3. J.H. van der Merwe: Phil. Mag. A, 1982, vol. 45, pp. 127–43.

    Google Scholar 

  4. H. Reiss: J. Appl. Phys., 1968, vol. 39, pp. 5045–48.

    Article  Google Scholar 

  5. N.H. Fletcher and K.W. Lodge: in Epitaxial Growth, J.W. Matthews, ed., Academic Press, New York, NY, 1975, Part B, pp. 529–57.

    Google Scholar 

  6. Y. Gotoh and T. Trai: Jpn. J. Appl. Phys., 1986, vol. 25, pp. L583-L586.

    Article  CAS  Google Scholar 

  7. A.D. Novaco and J.P. McTague: Phys. Rev. Lett., 1977, vol. 38, pp. 1286–89.

    Article  CAS  Google Scholar 

  8. P.M. Stoop: Master’s Thesis, University of Pretoria, Pretoria, 1986.

    Google Scholar 

  9. P.M. Stoop: Interface Sci., 1993, vol. 1, pp. 243–47.

    CAS  Google Scholar 

  10. J.H. van der Merwe, D.L. Tönsing, and P.M. Stoop: Thin Solid Films, 1994, vol. 237, pp. 297–309.

    Article  Google Scholar 

  11. L.A. Bruce and H. Jaeger: Phil. Mag. A, 1978 vol. 38, pp. 223–40.

    CAS  Google Scholar 

  12. G. Busch and H. Schade: Lectures on Solid State Physics, Pergamon Press, Oxford, United Kingdom, 1976.

    Google Scholar 

  13. J.W. Matthews: in Epitaxial Growth, J.W. Matthews, ed., Academic Press, New York, NY, 1975, Part B, pp. 559–609.

    Google Scholar 

  14. J.H. van der Merwe: Proc. Phys. Soc. (London), 1950, vol. A 63, p. 616–37.

    Google Scholar 

  15. W.A. Jesser and D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1967, vol. 21, pp. 533–44.

    CAS  Google Scholar 

  16. W. Bollmann: Crystal Defects and Crystalline Interfaces, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  17. J.H. van der Merwe and M.W.H. Braun: Appl. Surf. Sci., 1985, vol. 22–23, pp. 545–48.

    Google Scholar 

  18. J.H. van der Merwe and M.W.H. Braun: Mater. Res. Soc. Symp. Proc., 1987, vol. 77, pp. 133–44.

    Google Scholar 

  19. W.A. Jesser: Phys. Status Solidi (a), 1973, vol. 20, pp. 63–76.

    Article  Google Scholar 

  20. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley, New York, NY, 1982, pp. 24–25 and 91.

    Google Scholar 

  21. M.W.H. Braun, H.S. Kong, J.T. Glass, and R.F. Davis: J. Appl. Phys., 1991, vol. 69, pp. 2679–81.

    Article  CAS  Google Scholar 

  22. P.M. Stoop and J.A. Snyman: Thin Solid Films, 1988, vol. 158, pp. 151–66.

    Article  CAS  Google Scholar 

  23. P.M. Stoop, J.H. van der Merwe, and M.W.H. Braun: Phil. Mag. B, 1991, vol. 63, pp. 907–22.

    CAS  Google Scholar 

  24. H.I. Gaigher and N.J. van der Berg: Thin Solid Films, 1987, vol. 146, pp. 299–302.

    Article  CAS  Google Scholar 

  25. E. Bauer and J.H. van der Merwe: Phys. Rev. B, 1986, vol. 33, pp. 3657–71.

    Article  CAS  Google Scholar 

  26. M.W.H. Braun and J.H. van der Merwe: S.A. J. Sci., 1988, vol. 84, pp. 670–71.

    Google Scholar 

  27. W. Zhu, X.H. Wang, B.R. Stoner, G.H.M. Ma, H.S. Kong, M.W.H. Braun, and J.T. Glass: Phys. Rev. B, 1993, vol. 47, pp. 6529–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation in the symposium “Interfacial Dislocations: Symposium in Honor of J.H. van der Merwe on the 50th Anniversary of His Discovery,” as part of the 2000 TMS Fall Meeting, October 11–12, 2000, in St. Louis, Missouri, sponsored under the auspices of ASM International, Materials Science Critical Technology Sector, Structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, M.W.H., Van Der Merwe, J.H. Reciprocal-space formulation and prediction of misfit accommodation in rigid and strained epitaxial systems. Metall Mater Trans A 33, 2485–2494 (2002). https://doi.org/10.1007/s11661-002-0370-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0370-4

Keywords

Navigation