Skip to main content
Log in

Massive transformation in bismuth oxide-based ceramics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The massive transformation in metallic alloys has been investigated in considerable detail over the past three decades, both theoretically as well as experimentally. Rapid atomic transport, however, usually makes it difficult to experimentally investigate the kinetics of the massive transformation in metallic alloys under isothermal conditions. In ceramics, on the other hand, diffusion is generally much slower and can be manipulated through defect chemistry by the addition of an aliovalent dopant (that is, a dopant of a valence different from that of the host ion), and/or by altering the atmosphere. This, in principle, makes it possible to investigate the kinetics of the massive transformation in ceramics under isothermal conditions. The present manuscript reports on a study of the massive transformation in Bi2O3-based ceramics. Samples in the Bi2O3-RE2O3 systems, where RE is Y or a rare-earth ion, were fabricated in a dense from by consolidating requisite powder mixtures and sintering compacts in air. The high-temperature form of Bi2O3 is isostructural with CaF2, with 25 pct of the oxygen sites being vacant. This makes it an excellent oxygen ion conductor, thus affording the measurement of oxygen ion conductivity as a technique to investigate the kinetics of the massive transformation. The kinetics of the massive transformation was investigated under isothermal conditions using a number of techniques, including X-ray diffraction (XRD), reflected optical microscopy, transmission optical microscopy, transmission electron microscopy (TEM), electron-probe microanalysis (EPMA), and the measurement of ionic conductivity. The studies demonstrated that the cubic → rhombohedral transformation (during cooling) in Bi2O3-based ceramics is a massive transformation, and the rhombohedral → cubic reverse transformation (during heating) is also a massive transformation. A study of the Gd2O3-Bi2O3 system also showed that a massive transformation occurs inside a two-phase field, thus possibly shedding some light on a controversial point, much debated in the literature on metallic alloys. The sluggishness of the transformation kinetics suggests that ceramic systems are perhaps better suited to investigate salient features of the massive transformation (and, for that matter, many other diffusional transformations), theories for which have been developed for metallic alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Massalski: Acta Metall., 1958, vol. 6, pp. 243–53.

    Article  CAS  Google Scholar 

  2. J.E. Kittl and T.B. Massalski: Acta Metall., 1987, vol. 15, pp. 161–80.

    Google Scholar 

  3. D.A. Karlyn, J.W. Cahn, and M. Cohen: Trans. TMS-AIME, 1969, vol. 245, pp. 197–207.

    CAS  Google Scholar 

  4. E.B. Hawbolt and T.B. Massalski: Metall. Trans., 1970, vol. 1, pp. 2315–22.

    CAS  Google Scholar 

  5. T.B. Massalski, A.J. Perekins, and J. Jaklovski: Metall. Trans., 1971, vol. 3, pp. 687–94.

    Google Scholar 

  6. C. Claird and H.I. Aaronson: Acta Metall., 1969, vol. 17, pp. 505–19.

    Article  Google Scholar 

  7. K.R. Kinsman, E. Eichen, and H.I. Aaronson: Metall. Trans. A, 1975, vol. 6A, pp. 303–16.

    CAS  Google Scholar 

  8. G. Baro, H. Gleiter, J.H. Perepezko, and T.B. Massalski: Mater. Sci. Eng., vol. 22, pp. 171–76.

  9. S.K. Bhattacharya, J.H. Perepezko, and T.B. Massalski: Acta Metall., 1974, vol. 22, pp. 879–86.

    Article  Google Scholar 

  10. J.H. Perepezko and T.B. Massalski: Acta Metall., 1975, vol. 23, pp. 621–31.

    Article  CAS  Google Scholar 

  11. M.R. Plichta and H.I. Aaronson: Acta Metall., 1980, vol. 28, pp. 1041–57.

    Article  CAS  Google Scholar 

  12. M. Hillert: Metall. Trans. A, 1984, vol. 15A, pp. 411–19.

    CAS  Google Scholar 

  13. N. Nityanand, M.R. Plichta, and H.I. Aaronson: Scripta Metall., 1986, vol. 20, pp. 593–97.

    Article  CAS  Google Scholar 

  14. E.S.K. Menon, M.R. Plichta, and H.I. Aaronson: Acta Metall., 1988, vol. 36 (2), pp. 321–32.

    Article  CAS  Google Scholar 

  15. B. Johnson: J. Appl. Phys., 1990, vol. 67 (3), pp. 1307–11.

    Article  Google Scholar 

  16. B. Johnson and J. Agren: Acta Metall. Mater., 1990, vol. 38 (3), pp. 433–38.

    Article  Google Scholar 

  17. A.G. Khachaturyan: Theory of Structural Transformations in Solids, John Wiley & Sons, New York, NY, 1983, p. 143.

    Google Scholar 

  18. T.C. Yuan and A.V. Virkar: J. Am. Ceram. Soc., 1986, vol. 70 (12), pp. C310-C312.

    Google Scholar 

  19. J. Chen, Q. Tian, and A.V. Virkar: J. Am. Cearam. Soc., 1992, vol. 75 (4), pp. 809–21.

    Article  CAS  Google Scholar 

  20. L.G. Sillen and B. Aurivillius: Z. Krystaogr., 1939, vol. 101, pp. 483–95.

    CAS  Google Scholar 

  21. H.A. Harwig: Z. Anorg. Allg. Chem., 1978, vol. 444, pp. 151–60.

    Article  CAS  Google Scholar 

  22. H.A. Harwig and J.W. Weenk: Z. Anorg. Allg. Chem., 1978, vol. 444, pp. 161–77.

    Google Scholar 

  23. M.J. Verkerk, K. Keizer, and A.J. Burggraaf: J. Electrochem. Soc., 1973, vol. 3, pp. 65–72.

    Google Scholar 

  24. T. Takahashi and H. Iwahara: Mater. Res. Bull., 1978, vol. 13, pp. 1447–53.

    Article  CAS  Google Scholar 

  25. T. Takahashi, T. Esaka, and H. Iwahara: J. Appl. Electrochem., 1972, vol. 5, pp. 197–202.

    Article  Google Scholar 

  26. K.Z. Fung and A.V. Virkar: J. Am. Ceram. Soc., 1991, vol. 74 (8), pp. 1970–80.

    Article  CAS  Google Scholar 

  27. P. Su and A.V. Virkar: J. Electrochem. Soc., 1992, vol. 6, 1671–76.

    Article  Google Scholar 

  28. K.Z. Fung, J. Chen, and A.V. Virkar: J. Am. Ceram. Soc., 1993, vol. 76 (10), pp. 2403–18.

    Article  CAS  Google Scholar 

  29. K.Z. Fung, A.V. Virkar, and D.L. Drobeck: J. Am. Ceram. Soc., 1994, vol. 77 (6), pp. 1638–48.

    Article  CAS  Google Scholar 

  30. P. Su and A.V. Virkar: J. Am. Ceram. Soc., 1996, vol. 79 (2), pp. 371–80.

    Article  CAS  Google Scholar 

  31. R.K. Datta and J.P. Meehan: Z. Anorg. Allg. Chem., 1971, vol. 383, pp. 328–37.

    Article  CAS  Google Scholar 

  32. P. Su and A.V. Virkar: J. Am. Ceram. Soc., 1999, vol. 82 (8), pp. 2225–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virkar, A.V., Su, P. & Fung, KZ. Massive transformation in bismuth oxide-based ceramics. Metall Mater Trans A 33, 2433–2443 (2002). https://doi.org/10.1007/s11661-002-0365-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0365-1

Keywords

Navigation