Skip to main content
Log in

Isothermal transformations in an Fe-9 pct Ni alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Isothermal transformation from austenite in an Fe-9.14 pct Ni alloy has been studied by optical metallography and examination by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the temperature range 565 °C and 545 °C, massive ferrite (α q ) forms first at prior austenite grain boundaries, followed by Widmanstätten ferrite (α W ) growing from this grain boundary ferrite. Between 495 °C and 535 °C, Widmanstätten ferrite is thought to grow directly from the austenite grain boundaries. Both these transformations do not go to completion and reasons for this are discussed. These composition invariant transformations occur below T 0 in the two-phase field (α+γ). Previous work on the same alloy showed that transformation occurred to α q > and α W on furnace cooling, while analytical TEM showed an increase of Ni at the massive ferrite grain boundaries, indicating local partitioning of Ni at the transformation interface. An Fe-3.47 pct Ni alloy transformed to equiaxed ferrite at 707 °C ±5 °C inside the single-phase field on air cooling. This is in agreement with data from other sources, although equiaxed ferrite in Fe-C alloys forms in the two-phase region. The application of theories of growth of two types of massive transformation by Hillert and his colleagues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gilbert and W.S. Owen: Acta Metall., 1962, vol. 10, pp. 45–54.

    Article  CAS  Google Scholar 

  2. M.J. Roberts: Metall. Trans., 1970, vol. 1, pp. 3287–94.

    CAS  Google Scholar 

  3. E.A. Wilson: J. Iron Steel Inst., 1968, vol. 206, pp. 164–68.

    CAS  Google Scholar 

  4. Atlas for Bainitic Microstructures, Vol. 1, T. Araki, M. Enomoto, K. Shibata, H. Takechi, and I. Kozasu, eds., Bainite Committee of Iron & Steel Institute of Japan, 1992, pp. 4–5.

  5. E.A. Wilson: Ph.D. Thesis, University of Liverpool, Liverpool, 1965.

    Google Scholar 

  6. W.S. Owen and E.A. Wilson: “Physical Properties of Martensite and Bainite,” Special Report No. 93, The Iron Steel Institute, London, 1965, pp. 53–57.

    Google Scholar 

  7. E.A. Wilson: Met. Sci., 1984, vol. 18, pp. 471–84.

    Article  CAS  Google Scholar 

  8. E.A. Wilson: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 615–30.

    CAS  Google Scholar 

  9. S.H. Chong, A. Sayles, R. Keyse, J.D. Atkinson, and E.A. Wilson: Mater. Trans. JIM, 1998, vol. 39 (1), pp. 179–88.

    CAS  Google Scholar 

  10. Erratum to Ref. 9: Mater. Trans. JIM, 1999, vol. 40 (2), p. 168.

  11. L.J. Swartzendruber, V.P. Itkin, and C.B. Alcock: J. Phase Equilibria., 1991, vol. 12 (3), pp. 288–312.

    CAS  Google Scholar 

  12. A.D. Romig, Jr. and J.L. Goldstein: Metall. Trans. A, 1980, vol. 11A, pp. 1151–59.

    CAS  Google Scholar 

  13. C. Zener: Trans. AIME, 1946, vol. 167, pp. 513–34.

    Google Scholar 

  14. L. Kaufman and M. Cohen: Trans. AIME, 1956, vol. 206, pp. 1393–401.

    Google Scholar 

  15. A. Borgenstam and M. Hillert: Acta Mater., 1997, vol. 45, pp. 2079–91.

    Article  CAS  Google Scholar 

  16. T.B. Massalski, S.K. Bhattacharyya, and J.H. Perepezko: Metall. Trans. A, 1978, vol. 9A, pp. 53–56.

    CAS  Google Scholar 

  17. E.A. Wilson, D.V. Shtansky, and Y. Ohmori: Iron Steel Inst. Jpn. Int., 2001, vol. 41(8), pp. 866–75.

    CAS  Google Scholar 

  18. A. Reheman and D.V. Edmonds: in HSLA Steels 2000, G. Liu, F. Wang, Z. Wang, and H. Zhang, eds., The Metallurgical Industry Press, Beijing, 2001, pp. 241–47.

    Google Scholar 

  19. J.D. Watson and P.G. McDougall: Acta Metall., 1973, vol. 21, pp. 961–73.

    Article  CAS  Google Scholar 

  20. H.K.D.H. Bhadeshia: Acta Metall., 1981, vol. 29, pp. 1117–30.

    Article  CAS  Google Scholar 

  21. Y. Ohmori, H. Ohtsubo, Y. Chul Jung, S. Okaguchi, and H. Ohtani: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1981–89.

    CAS  Google Scholar 

  22. R.H. Larn and J.R. Yang: Mater. Sci. Eng., 1999, vol. A264, pp. 139–50.

    CAS  Google Scholar 

  23. F.B. Pickering: The Basis of Quantitative Metallography, The Institute of Metallurgical Technicians, Institute of Materials, London, 1976, Monograph No. 1, pp. 8–10.

    Google Scholar 

  24. A.N. Moiseyev, L.I. Izyumova, M.P. Usikov, and E.I. Estrin: Phys. Met. Metall., 1981, vol. 51 (4), pp. 137–46.

    Google Scholar 

  25. Z. Nishiyama: in Martensitic Transformations, M.E. Fine, M. Meshi, and C.M. Wayman, eds., Academic Press, New York, NY, 1978, p. 43.

    Google Scholar 

  26. R.L. Paterson and C.M. Wayman: Acta Metall., 1966, vol. 14, pp. 347–49.

    Article  Google Scholar 

  27. M. Hillert: Acta Metall., 1999, vol. 47 (18), pp. 4481–4505.

    CAS  Google Scholar 

  28. B. Jöhnsson and J. Ågren: Acta Metall. Mater., 1990, vol. 38, p. 433.

    Article  Google Scholar 

  29. G.R. Purdy and V.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, p. 3763.

    Article  CAS  Google Scholar 

  30. S.H. Chong: Ph.D. Thesis, Sheffield Hallam University, Sheffield, 1998.

    Google Scholar 

  31. A.R. Troiano and F.T. McGuire: Trans. ASM, 1943, vol. 31, pp. 340–59.

    Google Scholar 

  32. T. Bell and W.S. Owen: Metall. Trans. AIME, 1963, vol. 239, pp. 1940–48.

    Google Scholar 

  33. H.K.D.H. Bhadeshia: University of Cambridge, Cambridge, United Kingdom, private communication, 2001.

  34. E.O. Räsänen: Ph.D. Thesis, Technical University, Otaniemi-Helsinki, 1969.

    Google Scholar 

  35. A.D. King and T. Bell: Metallography, 1976, vol. 9, pp. 307–413.

    Article  Google Scholar 

  36. H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265–73.

    Article  CAS  Google Scholar 

  37. H.I. Aaronson, M.G. Hall, D.M. Barnett, and K.R. Kinsman: Scripta Metall., 1975, vol. 9, pp. 705–12.

    Article  CAS  Google Scholar 

  38. E.A. Wilson: Scripta Metall., 1978, vol. 12, pp. 961–68.

    Article  CAS  Google Scholar 

  39. E.A. Wilson: Mater. Sci. Technol., 1995, vol. 11, pp. 1110–15.

    CAS  Google Scholar 

  40. S. Floreen and R.F. Decker: Trans. ASM, 1962, vol. 55, pp. 518–1530.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, E.A., Chong, S.H. Isothermal transformations in an Fe-9 pct Ni alloy. Metall Mater Trans A 33, 2425–2431 (2002). https://doi.org/10.1007/s11661-002-0364-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0364-2

Keywords

Navigation