Skip to main content
Log in

The massive transformation in titanium aluminides: Initial stages of nucleation and growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Rapid solidification by twin-anvil splat quenching captures the initial nucleation and growth of the αγ m massive transformation in titanium aluminides. Splat quenching Ti52Al48 and Ti50Al48Cr2 from the liquid at slightly below the melting point produces an equiaxed α solidification structure. Solid-state cooling rates that approach 106 K/s arrest the αγ m massive transformation with 1- to 5-µm-sized γ m nuclei, especially in the Ti50Al48Cr2 alloy. Classical massive-transformation heterogenous nucleation occurs at α:α grain boundaries with an orientation relationship of [111] γ //[0001] α and \(\{ 110\} _\gamma //\{ 11\bar 20\} _\alpha \). The γ m nucleus then grows into the adjacent α grain without the orientation relationship by forming an incoherent α:γ interface with {111} γ facets. Orthogonal variants of the tetragonal c-axis in the γ m product suggest that the massive transformation initially produces an fcc structure which subsequently orders into the L10 phase. Nucleation of γ m is not only observed at α:α grain boundaries and triple points, but also within the α grains. The intragranular γ m nucleation, which is believed to be heterogeneous, occurs with the same orientation relationship as for the intergranular nuclei. However, the intragrain nuclei do not form {111} γ facets and retain a curved α:γ m interface. Although analysis of the {111} γ faceted growth using weak-beam dark-field (WBDF) imaging shows no evidence for any type of misfit-compensating dislocations, lattice imaging of the {111} γ facets with high resolution transmission electron microscopy (HRTEM) reveals that the planar interface exhibits a slight curvature, produced by atomic steps of (111) planes. These experimental data have been used to estimate a ratio of ledge spacing (λ) to ledge height (h) for the {111} γ facets as λ/h=41, which is similar to calculated values for a ledge growth mechanism of massive transformations in Cu-Zn and Ag-Cd alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Bhattacharyya, J.H. Perepezko, and T.B. Massalski: Acta Metall., 1974, vol. 22, pp. 879–86.

    Article  CAS  Google Scholar 

  2. J.H. Perepezko: Metall. Trans. A, 1984, vol. 15A, pp. 437–47.

    CAS  Google Scholar 

  3. M.R. Plichta, W.A.T. Clark, and H.I. Aaronson: Metall. Trans. A, 1984, vol. 15A, pp. 427–35.

    CAS  Google Scholar 

  4. E.B. Hawbolt and T.B. Massalski: Metall. Trans., 1970, vol. 1, pp. 2315–22.

    CAS  Google Scholar 

  5. J.D. Ayers and and D.C. Joy: Acta Metall., 1972, vol. 20 pp. 1371–79.

    Article  CAS  Google Scholar 

  6. J.D. Ayers: Acta Metall., 1980, vol. 28, pp. 1513–22.

    Article  CAS  Google Scholar 

  7. M.R. Plichta, J.H. Perepezko, H.I. Aaronson, and W.F. Lange III: Acta Metall., 1980, vol. 28, pp. 1031–40.

    Article  CAS  Google Scholar 

  8. M.R. Plichta and H.I. Aaronson: Acta Metall., 1980, vol. 28 pp. 1041–57.

    Article  CAS  Google Scholar 

  9. E.S.K. Menon, M.R. Plichta, and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 321–32.

    Article  CAS  Google Scholar 

  10. P. Wang, G.B. Viswanathan, and V.K. Vasudevan: Metall. Trans. A, 1992, vol. 23A, pp. 690–97.

    CAS  Google Scholar 

  11. P. Wang and V.K. Vasudevan: Scripta Metall., 1992, vol. 27, pp. 89–94.

    Article  CAS  Google Scholar 

  12. S.A. Jones and M.J. Kaufman: Acta Metall., 1993, vol. 41, pp. 387–98.

    Article  CAS  Google Scholar 

  13. X.D. Zhang, S. Godfrey, M. Weaver, M. Strangwood, P. Threadgill, M.J. Kaufman, and M.H. Loretto: Acta Mater., 1996, vol. 44, pp. 3723–34.

    Article  CAS  Google Scholar 

  14. X.D. Zhang, Y.G. Li, M.J. Kaufman, and M.H. Loretto: Acta Mater., 1996, vol. 44, pp. 3735–47.

    Article  CAS  Google Scholar 

  15. P. Wang, M. Kumar, D. Veeraraghaven, and V.K. Vasudevan: Acta Mater., 1998, vol. 46, pp. 13–30.

    Article  CAS  Google Scholar 

  16. D. Veeraraghavan, P. Wang, and V.K. Vasudaven: Acta Mater., 1999, vol. 47 (11), pp. 3313–30.

    Article  CAS  Google Scholar 

  17. J.E. Wittig and W.H. Hofmeister: Microsc. Microanal., 1998, vol. 4 (2) pp. 538–39.

    Google Scholar 

  18. T.M. Miller, L. Wang, W.H. Hofmeister, J.E. Wittig, and I.M. Anderson: Mater. Res. Soc. Symp. Proc., 2001 vol. 589 pp. 123–28.

    CAS  Google Scholar 

  19. D.E. Simms: Master’s Thesis, Vanderbilt University, Nashville, TN, 1996.

    Google Scholar 

  20. M.H. Loretto and R.E. Smallman: Defect Analysis in Electron Microscopy, John Wiley and Sons Inc., New York, NY, 1975, pp. 91–98.

    Google Scholar 

  21. H.I. Aaronson: Metall. Trans. A, 1993, vol. 24A, pp. 241–76

    CAS  Google Scholar 

  22. H.I. Aaronson and F.K. LeGoues: Metall. Trans. A, 1992, vol. 23A, pp. 1915–44.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittig, J.E. The massive transformation in titanium aluminides: Initial stages of nucleation and growth. Metall Mater Trans A 33, 2373–2379 (2002). https://doi.org/10.1007/s11661-002-0360-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0360-6

Keywords

Navigation