Skip to main content
Log in

Massive transformation and absolute stability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 µm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T 0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T 0. In some cases, this temperature might even drop below the lower solvus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Massalski, J.H. Perepezko, and J. Jaklovsky: Mater. Sci. Eng., 1975, vol. 18, p. 193.

    Article  CAS  Google Scholar 

  2. J.H. Perepezko: Metall. Trans. A, 1984, vol. 15A, p. 437.

    CAS  Google Scholar 

  3. J.H. Perepezko and T.B. Massalki: Acta Metall., 1975, vol. 23, p. 621.

    Article  CAS  Google Scholar 

  4. M. Hillert: Metall. Trans. A, 1984, vol. 15A, p. 411.

    CAS  Google Scholar 

  5. M. Hillert and M. Schalin: Acta Mater., 2000, vol. 48, p. 461.

    Article  CAS  Google Scholar 

  6. A. Borgenstam and M. Hillert: Acta Mater., 2000, vol. 48, p. 2765.

    Article  CAS  Google Scholar 

  7. M. Hillert: in The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals Monograph No. 33, Institute of Metals, London, 1969, p. 231.

    Google Scholar 

  8. W. Kurz and M. Lima: Proc. Int. Conf. Solid-Solid Phase Transformations, The Japan Institute of Metals, Kyoto, Japan, 1999, p. 1581.

    Google Scholar 

  9. R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, p. 49.

    CAS  Google Scholar 

  10. P. Gilgien and W. Kurz: Mater. Sci. Eng., 1994, vol. A178, p. 199.

    Google Scholar 

  11. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, p. 428.

    Article  CAS  Google Scholar 

  12. W.J. Boettinger and S.R. Coriell: Science and Technology of the Undercooled Melt, NATO ASI Series 114, P.R. Sahm, H. Jones, and C.M. Adams, eds., NATO, Dordrecht, Netherlands, 1986, p. 81.

    Google Scholar 

  13. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, p. 1158.

    Article  CAS  Google Scholar 

  14. M.J. Aziz and T. Kaplan: Acta Metall., 1988, vol. 36, p. 2335.

    Article  CAS  Google Scholar 

  15. M.J. Aziz: Metall. Mater. Trans. A, 1996, vol. 27A, p. 671.

    CAS  Google Scholar 

  16. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall. Mater., 1986, vol. 34, p. 823.

    Article  CAS  Google Scholar 

  17. W Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998, p. 247.

    Google Scholar 

  18. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1989, vol. 35, p. 444.

    Article  Google Scholar 

  19. D.A. Huntley and S.H. Davis: Acta Metall. Mater., 1993, vol. 41, p. 2025.

    Article  CAS  Google Scholar 

  20. M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz: Acta Metall. Mater., 1992, vol. 40, p. 983.

    Article  CAS  Google Scholar 

  21. W. Kurz and R. Trivedi: Metall. Mater. Trans. A, 1996, vol. 27A, p. 625.

    CAS  Google Scholar 

  22. D. Turnbull: J. Phys. Chem., 1962, vol. 66, p. 609.

    CAS  Google Scholar 

  23. M. Vandyoussefi, H.W. Kerr, and W. Kurz: Acta Mater., 1997, vol. 45, p. 4093.

    Article  CAS  Google Scholar 

  24. M. Sumida and W. Kurz: EPFL, Lausanne, unpublished research 2001.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, M., Kurz, W. Massive transformation and absolute stability. Metall Mater Trans A 33, 2337–2345 (2002). https://doi.org/10.1007/s11661-002-0357-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0357-1

Keywords

Navigation