Skip to main content
Log in

Critical limit for massive transformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to understand the mechanism of the massive type of phase transformation, it is essential to study its critical limit in the phase diagram and to analyze the results with theoretical models. The model, based on the interaction between solute atoms and the migrating interface, is described in detail and applied to binary alloys. The importance of the relation between the mobility of the interface relative to the atomic mobilities inside the interface is emphasized. Specimens with a constant heat or carbon content offer valuable experimental variables. It is, thus, possible to force the interface to advance slowly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Massalski: Phase Transformations, Seminar of the American Society of Metals 1968, ASM, Metals Park, OH, 1970, pp. 433–86.

    Google Scholar 

  2. A. Borgenstam and M. Hillert: Acta Mater., 2000, vol. 48, pp. 2765–75.

    Article  CAS  Google Scholar 

  3. H.I. Aaronson, C. Laird, and K.R. Kinsman: Scripta Metall., 1968, vol. 2, pp. 259–64.

    Article  CAS  Google Scholar 

  4. K. Lücke and K. Detert: Acta Metall., 1957, vol. 5, pp. 628–35.

    Article  Google Scholar 

  5. K. Lücke and H. Stüwe: Recovery and Recrystallization of Metals, Interscience, New York, NY, 1963, pp. 131–59.

    Google Scholar 

  6. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.

    Article  CAS  Google Scholar 

  7. M. Hillert: The Mechanism of Phase Transformations in Crystalline Solids, Monograph No. 33, Institute of Metals, London, 1969, pp. 231–47.

    Google Scholar 

  8. M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, pp. 731–43.

    Article  CAS  Google Scholar 

  9. M. Hillert: Acta Mater., 1999, vol. 47, pp. 4481–4505.

    Article  CAS  Google Scholar 

  10. M. Hillert, J. Odqvist, and J. Ågren: Scripta Mater., in press.

  11. D. Turnbull: Trans. AIME, 1951, vol. 191, pp. 661–67.

    Google Scholar 

  12. M. Hillert and M. Schalin: Acta Mater., 2000, vol. 48, pp. 461–68.

    Article  CAS  Google Scholar 

  13. D.A. Karlyn, J.W. Cahn, and M. Cohen: Trans. TMS-AIME, 1969, vol. 245, pp. 197–207.

    CAS  Google Scholar 

  14. M. Hillert: Metall. Trans. A, 1984, vol. 15A, pp. 411–19.

    CAS  Google Scholar 

  15. E.B. Hawbolt and T.B. Massalski: Metall. Trans., 1970, vol. 1, pp. 2315–22.

    CAS  Google Scholar 

  16. T.B. Massalski, A.J. Perkins, and J. Jaklovsky: Metall. Trans., 1972, vol. 3, pp. 687–94.

    CAS  Google Scholar 

  17. T.B. Massalski, J.H. Perepezko, and J. Jaklovsky: Mater. Sci. Eng., 1975, vol. 18, pp. 193–98.

    Article  CAS  Google Scholar 

  18. F.W. Jones and W.I. Pumphrey: J. Iron Steel Inst., 1949, vol. 163, pp. 121–31.

    CAS  Google Scholar 

  19. M. Suehiro, J. Ågren, and Z.-K. Liu: Acta Metall. Mater., 1996, vol. 44, pp. 4241–51.

    CAS  Google Scholar 

  20. A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915–89.

    Google Scholar 

  21. A. Hultgren: Kungl. Vet. Akad. Handl., 1953, vol. 4 (3).

  22. M. Hillert: “Paraequilibrium,” Internal Report, Swedish Institute of Metals Research, Stockholm, 1953.

    Google Scholar 

  23. M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations—Their Thermodynamic Basis, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  24. K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, pp. 2147–55.

    Article  CAS  Google Scholar 

  25. N.E. Hannerz: Bachelor’s Thesis, KTH, Stockholm, 1961; cited by M. Hillert: Suppl. Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 1153–59.

    Google Scholar 

  26. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans. AIME, 1964, vol. 230, pp. 1025–34.

    CAS  Google Scholar 

  27. Z.-K. Liu and J. Ågren: Acta Mater., 1989, vol. 37, pp. 3157–63.

    Article  CAS  Google Scholar 

  28. Z.-K. Liu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1625–31.

    Article  CAS  Google Scholar 

  29. M. Suehiro: Proc. Int. Conf. in Solid-Solid Phase Transformations ’99 (JIMIC-3), M. Koiwa, K. Otsuka, and T. Miyazaki, eds., The Japan Institute of Metals, Sendai, Japan, 1999, pp. 1465–69.

    Google Scholar 

  30. G.R. Purdy and Y.J.M. Brechet: Acta Mater., 1995, vol. 43, pp. 3763–74.

    Article  CAS  Google Scholar 

  31. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40.

    Article  CAS  Google Scholar 

  32. A. Borgenstam and M. Hillert: Acta Mater., 1997, vol. 45, pp. 2079–91.

    Article  CAS  Google Scholar 

  33. G.J. Shiflet and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1413–32.

    CAS  Google Scholar 

  34. W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.

    CAS  Google Scholar 

  35. K.R. Kinsman and H.I. Aaronson: Transformations and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 33–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillert, M. Critical limit for massive transformation. Metall Mater Trans A 33, 2299–2308 (2002). https://doi.org/10.1007/s11661-002-0353-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0353-5

Keywords

Navigation