Skip to main content
Log in

Pressure effects on flow and fracture of Be-Al alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The flow and fracture behavior of Be-Al alloys were determined in tension with different levels of superimposed pressure. The Be-Al alloys were prepared by Brush Wellman, Inc. (Cleveland, OH) from prealloyed powders processed to either a hot isostatically pressed (“hipped”) or cold isostatically pressed and extruded condition. Significant effects of pressure on both the flow and ductility have been observed at room temperature, with implications on the formability of these materials. The effects of changes in processing conditions and stress state on the flow and fracture behavior are summarized in addition to both optical and scanning electron microscopy (SEM) examination of the fracture surfaces. Separate other studies on the alloy constituents (e.g., Al and Be) are also reported. The results are also compared to previous works on monolithic materials and composites tested with high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Darwin and J.H. Buddery: Beryllium, Academic Press, New York, NY, 1960, pp. 45–163.

    Google Scholar 

  2. A.J. Martin and G.C. Ellis: The Metallurgy of Beryllium, Chapman and Hall, London, 1963, pp. 3–31.

    Google Scholar 

  3. G.L. Tuer and A.R. Kaufman: in The Metal Beryllium, J. White, and J.E. Burke, eds., ASM INTERNATIONAL, Cleveland, OH, 1955, pp. 409–23.

    Google Scholar 

  4. F.C. Grensing and D. Hashiguchi: Particulate Mater., 1995, vol. 3, pp. 12/33–12/45.

    Google Scholar 

  5. V.C. Nardone and T.J. Garosshen: J. Mater. Sci., 1997, vol. 32, pp. 3975–85.

    Article  CAS  Google Scholar 

  6. V.C. Nardone and T.J. Garosshen: J. Mater. Sci., 1997, vol. 32, pp. 2549–57.

    Article  CAS  Google Scholar 

  7. W.H. Santschi and W.G. Marz: in Beryllium Technol., S.L. McDonald and H.A. Johnson, eds., Gordon and Breach, New York, NY, 1966, pp. 523–37.

    Google Scholar 

  8. J.L. Murray and D.J. Kahan: in Phase Diagrams Binary Beryllium Alloys, H. Okamoto and L.E. Tanner, eds., ASM INTERNATIONAL, Metals Park, Metals Park, OH, 1987, pp. 9–14.

    Google Scholar 

  9. J.J. Lewandowski and P. Lowhaphandu: Int. Mater. Rev., 1998, vol. 43, pp. 145–87.

    CAS  Google Scholar 

  10. E.A. Stack and A. Bobrowsky: in Beryllium Technology, S.L. McDonald and H.A. Johnson, eds., Gordon and Breach, New York, NY, 1966, pp. 411–43.

    Google Scholar 

  11. E. Aladag: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 1968.

    Google Scholar 

  12. R.A. Mayville and I. Finnie: Trans. ASME, 1982, vol. 104, pp. 200–06.

    Google Scholar 

  13. B. King: in Beryllium: Its Metallurgy and Properties, H.H. Hausner, ed., University of California Press, Los Angeles, CA, 1965, pp. 206–33.

    Google Scholar 

  14. A.L. Grow and J.J. Lewandowski: SAE Trans., 1993, paper no. 950260, pp. 1–5.

  15. C.W. Andrews and S.V. Radcliffe: Acta Metall., 1967, vol. 15, pp. 623–37.

    Article  CAS  Google Scholar 

  16. A.K. Vasudevan, O. Richmond, F. Zok, and J.D. Embury: Mater. Sci. Engineer. A, 1989, vol. A107, pp. 63–69.

    Article  CAS  Google Scholar 

  17. J.J. Lewandowski: in Comprehensive Composite Materials, A. Kelly and C. Zween, eds., vol. 3, Metal Matrix Composites, T.W. Clyne, ed., Elsevier, New York, NY, 2000, pp. 151–87.

    Google Scholar 

  18. D.S. Liu and J.J. Lewandowski: Metall. Trans. A, 1993, vol. 24A, pp. 609–15.

    CAS  Google Scholar 

  19. C. González and J. LLorca: USACM—6th U.S. National Congress on Computational Mechanics, Dearborn, MI, August 1–2, 2001, University of Michigan, Ann Arbor, MI, p. 743.

  20. D. Francois and T.R. Wilshaw: J. Appl. Phys., 1968, vol. 39, pp. 4170–78.

    Article  CAS  Google Scholar 

  21. D. Teirlink, F. Zok, J.D. Embury, and M.F. Ashby: Acta Metall., 1988, vol. 36, pp. 1213–28.

    Article  Google Scholar 

  22. D.H. Carter and A.M. Bourke: Acta Mater., 2000, vol. 48, pp. 2885–2900.

    Article  CAS  Google Scholar 

  23. J.G. Kaufman and M. Holt: Fracture Characteristics of Aluminum Alloys, Aluminum Company of America, Pittsburgh, PA, 1965.

    Google Scholar 

  24. H.F. Fischmeister, S. Schmauder, and L.S. Sigl: Mater. Sci. Engineer., 1988, vols. A105–A106, pp. 305–11.

    Article  Google Scholar 

  25. I.E. French and P.F. Weinrich: Metall. Trans. A, 1975, vol. 6A, pp. 1165–69.

    CAS  Google Scholar 

  26. D.S. Liu and J.J. Lewandowski: Metall. Trans. A, 1993, vol. 24A, pp. 601–08.

    CAS  Google Scholar 

  27. C.H. Robbins and A.S. Wronski: Acta Metall., 1978, vol. 26, pp. 1061–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larose, J., Lewandowski, J.J. Pressure effects on flow and fracture of Be-Al alloys. Metall Mater Trans A 33, 3555–3564 (2002). https://doi.org/10.1007/s11661-002-0343-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0343-7

Keywords

Navigation