Skip to main content
Log in

Simulation of cavitation processes in superplastic deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cavitation behavior during superplastic deformation is simulated by developing a three-dimensional model which incorporates the continuous nucleation, plastic growth, and coalescence of cavities. The cavity growth rate is determined by using an empirical relationship between the Poisson’s ratio and the cavity volume fraction, and cavities after coalescence are represented as overlapped spheres. The volumetric cavity growth-rate parameter (2.0 to 2.5) obtained from the simulation is consistent with the range of experimental observation. Comparison of the simulation with a modified Pilling’s model for cavity coalescence shows that the growth rates of the average cavity volume are consistent with each other at small strains, whereas they are higher in the former than in the latter at large strains. This is because multiple coalescence, rather than the pairwise coalescence assumed in the Pilling’s model, becomes predominant at large strains in the simulation. Between the simulation and experiments, close agreement is also found in the cavity-size distribution normalized with a maximum cavity size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Hancock: Met. Sci., 1976, vol. 10, pp. 319–25.

    Article  CAS  Google Scholar 

  2. A.H. Chokshi and T.G. Langdon: Acta Metall., 1987, vol. 35, pp. 1089–1101.

    Article  CAS  Google Scholar 

  3. R. Raj and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  4. T.-J. Chuang, K.I. Kagawa, J.R. Rice, and L.B. Sills: Acta Metall., 1979, vol. 27, pp. 265–84.

    Article  CAS  Google Scholar 

  5. A.C.F. Cocks and M.F. Ashby: Met. Sci., 1982, vol. 16, pp. 465–74.

    Article  Google Scholar 

  6. M.J. Stowell, D.W. Livesey, and N. Ridley: Acta Metall., 1984, vol. 32, pp. 35–42.

    Article  Google Scholar 

  7. J. Pilling: Mater. Sci. Technol., 1985, vol. 1, pp. 461–65.

    Google Scholar 

  8. M.J. Stowell: Met. Sci., 1980, vol. 14, pp. 267–72.

    Article  CAS  Google Scholar 

  9. J. Pilling and N. Ridley: Acta Metall., 1986, vol. 34, pp. 669–79.

    Article  CAS  Google Scholar 

  10. A.H. Chokshi and T.G. Langdon: Acta Metall., 1989, vol. 37, pp. 715–23.

    Article  CAS  Google Scholar 

  11. D.H. Bae and A.K. Ghosh: Acta Mater., 2002, vol. 50, pp. 993–1009.

    Article  CAS  Google Scholar 

  12. K. Hiraga and K. Nakano: Mater. Sci. Forum, 1997, vols. 243–245, pp. 387–92.

    Article  Google Scholar 

  13. Z.C. Wang, N. Ridley, and T.J. Davies: J. Mater. Sci., 1999, vol. 34, pp. 2695–702.

    Article  CAS  Google Scholar 

  14. P.D. Nicolaou and S.L. Semiatin: Acta Mater., 2000, vol. 48, pp. 3441–50.

    Article  CAS  Google Scholar 

  15. P.D. Nicolaou, S.L. Semiatin, and A.K. Ghosh: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1425–34.

    CAS  Google Scholar 

  16. S. Shima and M. Oyane: Int. J. Mech. Sci., 1976, vol. 18, pp. 285–91.

    Article  Google Scholar 

  17. R.E. Dutton, P.D. Nicolaou, and S.L. Semiatin: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2041–50.

    CAS  Google Scholar 

  18. P.D. Nicolaou and S.L. Semiatin: Acta Mater., 1999, vol. 47, pp. 3679–86.

    Article  CAS  Google Scholar 

  19. B.-N. Kim, K. Hiraga, Y. Sakka, and B.-K. Jang: Scripta Mater., 2001, vol. 45, pp. 61–67.

    Article  CAS  Google Scholar 

  20. X. Jiang, J. Cui, and L. Ma: Mater. Sci. Eng. A, 1994, vol. A174, pp. L9-L11.

    CAS  Google Scholar 

  21. P.P. Bansal and A.J. Ardell: Metallography, 1972, vol. 5, pp. 97–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, BN., Hiraga, K. Simulation of cavitation processes in superplastic deformation. Metall Mater Trans A 33, 3449–3455 (2002). https://doi.org/10.1007/s11661-002-0332-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0332-x

Keywords

Navigation