Skip to main content
Log in

Anisotropy of intermetallic particle cracking damage evolution in an Al-Mg-Si base wrought aluminum alloy under uniaxial compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Particle cracking is an important damage mode in numerous engineering alloys having anisotropic microstructures. In this contribution, cracking of anisotropic Fe-rich intermetallic particles in an extruded 6061 (T651) Al-alloy is quantitatively characterized as a function of compressive strain for two loading directions. The Fe-rich intermetallic particles rotate when a compressive load is applied parallel to the extrusion direction, which in turn affects the particle cracking process. At low compressive strains, the number fraction of cracked Fe-rich particles is higher in specimens loaded perpendicular to the extrusion axis as compared to that in specimens loaded parallel to the extrusion axis. However, the reverse is true at the high strain levels. These differences in damage evolution are explained on the basis of particle rotations and microstructural anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Horstmeyer and A.M. Gokhale: Int. J. Solids Struct., 1999, vol. 36, pp. 5029–55.

    Article  Google Scholar 

  2. M.F. Horstemeyer, J. Lathrop, A.M. Gokhale, and M. Dighe: Theor. Appl. Fract. Mech., 2000, vol. 33, pp. 31–47.

    Article  CAS  Google Scholar 

  3. Jien-Wei Yeh and Wen-Pin Liu: Metall. Trans. A, 1996, vol. 27A, pp. 3558–69.

    Article  CAS  Google Scholar 

  4. R. Doglione, J.L. Douziech, C. Berdin, and D. Francois: Mater. Sci. Forum, 1996, pp. 130–39.

  5. E.N. Pan, C.S. Lin, and C.R. Loper: Am. Foundrymen Soc. Trans., 1990, vol. 98, pp. 735–46.

    CAS  Google Scholar 

  6. J. Gurland and J. Plateau: Trans. ASM, 1963, vol. 56, pp. 442–52.

    CAS  Google Scholar 

  7. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  8. J. Gurland: Acta Metall., 1972, vol. 20, pp. 735–41.

    Article  CAS  Google Scholar 

  9. J.L. Maloney and W.M. Garrison, Jr.: Scripta Metall., 1989, vol. 23, pp. 2097–2100.

    Article  CAS  Google Scholar 

  10. T.B. Cox and J.R. Low: Metall. Trans., vol. 5, pp. 1457–70.

  11. A. Gangalee and J. Gurland: Trans. TMS-AIME, 1967, vol. 239, pp. 269–72.

    Google Scholar 

  12. M.D. Dighe: Master’s Thesis, Teorgia Institute of Technology, Atlanta, GA, 1999.

    Google Scholar 

  13. M.D. Dighe, A.M. Gokhale, and M.F. Horstemeyer: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 555–65.

    Google Scholar 

  14. M.D. Dighe, A.M. Gokhale, and M.F. Horstemeyer: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 905–08.

    Google Scholar 

  15. M.D. Dighe, A.M. Gokhale, and M.F. Horstemeyer: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1725–31.

    CAS  Google Scholar 

  16. P. Louis and A.M. Gokhale: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1449–54.

    CAS  Google Scholar 

  17. C.H. Caceres and J.R. Griffiths: Acta Mater., 1996, vol. 44, pp. 25–33.

    Article  CAS  Google Scholar 

  18. G.B. Jeffery: Proc. R. Soc., London, 1923, vol. A102, pp. 161–79.

    Google Scholar 

  19. S. Prager: Trans. Soc. Rheology, 1957, vol. 1, pp. 53–62.

    Article  Google Scholar 

  20. J.L. Erickson: Arch. Rat. Mech. Anal., 1959, vol. 4, pp. 231–37.

    Article  Google Scholar 

  21. G.L. Hand: J. Fluid Mech., 1962, vol. 33, pp. 33–46.

    Article  Google Scholar 

  22. C. Schuh and D.C. Dunand: Int. J. Plasticity, 2001, vol. 17, pp. 317–40.

    Article  CAS  Google Scholar 

  23. Arun Kumar Balasundaram: Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, 2001.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, H., Gokhale, A.M., Graham, S. et al. Anisotropy of intermetallic particle cracking damage evolution in an Al-Mg-Si base wrought aluminum alloy under uniaxial compression. Metall Mater Trans A 33, 3443–3448 (2002). https://doi.org/10.1007/s11661-002-0331-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0331-y

Keywords

Navigation