Skip to main content
Log in

Statistical self-similarity in Rhines’ concept of unique multiphase diffusion paths on the ternary gibbs’ isotherm

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

For ternary systems with infinite boundary values encompassing supersaturation, interface instability is inevitable with the emergence of internal microstructural order parameters that exhibit autonomy from the initial and/or boundary conditions in accord with tie-line degrees of freedom. A well-known description of statistical self-similarity in such a nonisotropic system following Rhine’s experiments is Wagner’s one-dimensional theory of dilute multidisperse internal oxidation and its generalization provided by the author and Morral and co-workers. These treatments yield unique self-similar or parabolic solutions transferable to the Gibbs isotherm for solute distribution and relative precipitate fraction. This article is concerned with the more general free-boundary dispersion problem involving both microstructure mode and wave number selection. It offers a vacancy-based argument within a scalar time-dependent, Ginzburg-Landau reaction formalism as to why observations of average parabolic relaxation extend to a much wider range of constitutions, morphology, and volume fractions than considered by Wagner. The idea of mode selection is introduced in some detail; a cusp catastrophe being explicitly identified with the triplet of virtual diffusion paths corresponding to special composition terminals. The possible role of dissipation principles in removing such complex degeneracies is briefly discussed. We present a semiquantitative analysis of Coates’ experiments in Cu-Zn-Ni together with an explanation of the observed plastic turbulence in terms of Curie’s theorem and the Kirkendall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Clark and F.N. Rhines: Trans. ASM, 1959, vol. 51, p. 199.

    Google Scholar 

  2. R.A. Rapp, A. Ezis, and G.J. Yurek: Metall. Trans., 1973, vol. 4, p. 1283.

    CAS  Google Scholar 

  3. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, The Institute of Metals, London, 1987.

    Google Scholar 

  4. W.W. Mullins: J. Appl. Phys., 1986, vol. 59, p. 1341.

    Article  CAS  Google Scholar 

  5. W.W. Mullins: Acta Metall. Mater., 1991, vol. 39, p. 2081.

    Article  Google Scholar 

  6. D.E. Coates: Ph.D. Dissertation, McMaster University, Hamilton, Canada, 1970.

    Google Scholar 

  7. D.E. Coates and J.S. Kirkaldy: Metall. Trans., 1971, vol. 2, p. 3467.

    CAS  Google Scholar 

  8. J.S. Kirkaldy: in Advances in Materials Research, H. Herman, ed., John Wiley, New York, NY, 1970.

    Google Scholar 

  9. J.S. Kirkaldy and L.C. Brown: ASM Trans. Q., 1963, vol. 2, p. 89.

    CAS  Google Scholar 

  10. P. Maugis, W. Hopfe, J. Morral, and J.S. Kirkaldy: Acta Mater., 1996, vol. 45, p. 1941.

    Article  Google Scholar 

  11. L.X. Liu and J.S. Kirkaldy: Scripta Metall. Mater., 1995, vol. 41, p. 2891.

    Google Scholar 

  12. C. Wagner: J. Met., 1954, Feb., p. 154.

  13. R. Thom: Structural Stability and Morphogenesis, Benjamin, New York, NY, 1975.

    Google Scholar 

  14. E.C. Zeeman: Catastrophe Theory, Addison-Wesley, Reading, MA, 1977.

    Google Scholar 

  15. C. Wagner: J. Coll. Soc., 1950, vol. 5, p. 85.

    Article  CAS  Google Scholar 

  16. F.N. Rhines: Met. Technol., 1940, Feb., p. 1.

  17. G.R. Laflamme and G.E. Morral: Acta Metall., 1978, vol. 26, p. 1791.

    Article  CAS  Google Scholar 

  18. E.K. Ohriner and J.E. Morral: Scripta Metall., 1979, vol. 13, p. 7.

    Article  CAS  Google Scholar 

  19. G. Savva, G.C. Weatherly, and J.S. Kirkaldy: Metall. Mater. Trans. A, 1996, vol. 27A, p. 1611.

    CAS  Google Scholar 

  20. A. Ardell: Scripta Metall. Mater., 1990, vol. 24, p. 343.

    Article  CAS  Google Scholar 

  21. S.M. Allen and J.W. Cahn: Acta Metall., 1979, vol. 27, p. 1085.

    Article  CAS  Google Scholar 

  22. G.L. Ginzburg and L.D. Landau: Sov. Phys., JETP, 1950, vol. 20, p. 1064.

    CAS  Google Scholar 

  23. K. Kawasaki: in Proc. 1986 Summer School in Statistical Mechanics, C.-K. Ho, ed., Institute of Physics, Academica Sinica, Taipei, 1987, p. 171.

    Google Scholar 

  24. M. Hillert: Acta Metall., 1961, vol. 9, p. 525.

    Article  CAS  Google Scholar 

  25. J.W. Cahn: Acta Metall., 1961, vol. 9, p. 795.

    Article  CAS  Google Scholar 

  26. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, p. 444.

    Article  Google Scholar 

  27. W.J. Boettinger, A.A. Wheeler, B.T. Murray, G.B. McFadden, and R. Kobayashi: in Modelling of Coarsening and Growth, S.P. Marsh and C. Pande, eds., TMS, Warrendale, PA, 1992.

    Google Scholar 

  28. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden: Phys. Rev. E, 1993, vol. 47, p. 1893.

    Article  CAS  Google Scholar 

  29. J.S. Kirkaldy: Scripta Metall., 1989, vol. 23, p. 2019.

    Article  CAS  Google Scholar 

  30. J.S. Kirkaldy: Rep. Progr. Phys., 1992, vol. 55, p. 723.

    Article  Google Scholar 

  31. G.H. Gilmer and C. Roland: Appl. Phys. Lett., 1994, vol. 15, p. 824.

    Article  Google Scholar 

  32. Y.G. Yang, R.A. Johnson, and H.N.G. Wadley: Acta Mat., 1997, vol. 45, p. 1455.

    Article  CAS  Google Scholar 

  33. J.E. Taylor: in Mathematics of Microstructure Evolution, L.-Q. Chen, B. Fultz, J.W. Cahn, J.R. Manning, J.E. Morral, J. Simmons, eds., TMS, Warrendale PA, 1996, p. 135.

    Google Scholar 

  34. W.C. Carter, J.E. Taylor, and J.W. Cahn: JOM, 1997, vol. 49, p. 30.

    CAS  Google Scholar 

  35. G.D. Kirchhoff: Ann. Phys., vol. 75, 1845, p. 189.

    Google Scholar 

  36. S.R. de Groot and P. Mazur: Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962, p. 46ff.

    Google Scholar 

  37. D. Venugopalan and J.S. Kirkaldy: Acta Metall., 1984, vol. 32, p. 893.

    Article  CAS  Google Scholar 

  38. R. Kobayashi: Physica D, 1993, vol. 63, p. 410.

    Article  Google Scholar 

  39. R.A. Van Santen: J. Phys. Chem., 1984, vol. 88, p. 5768.

    Article  Google Scholar 

  40. R.A. Van Santen: J. Phys. Chem., 1988, vol. 42, p. 248.

    Article  Google Scholar 

  41. J.W. Cahn: Acta Met., 1959, vol. 1, p. 18.

    Article  Google Scholar 

  42. I.G. Solorzand and G.R. Purdy: Metall. Trans. A, 1984, vol. 15A, p. 1055.

    Google Scholar 

  43. G.W. Roper and D.P. Whittle: Met. Sci., 1981, vol. 5, p. 148.

    Google Scholar 

  44. W.D. Hopfe and J.E. Morral: Acta Metall. Mater., 1994, vol. 42, p. 3887.

    Article  CAS  Google Scholar 

  45. I. Prigogine: Introduction to Thermodynamics of Irreversible Processes, Thomas, Springfield, IL, 1955.

    Google Scholar 

  46. J.S. Kirkaldy: in Nucleation and Growth Processes in Materials, A. Gonis, P. Turchi, and A. Ardell, eds., MRS, Pittsburgh, PA, 2000, vol. 580, p. 3.

    Google Scholar 

  47. J.S. Kirkaldy and R.C. Sharma: Acta Metall., 1980, vol. 28, p. 1009.

    Article  Google Scholar 

  48. J.S. Kirkaldy: Phys. Rev., 1984, vol. B30, p. 6889.

    Google Scholar 

  49. L.C. Correa da Silva and R.F. Mehl: Trans. AIME, 1951, vol. 191, p. 155.

    Google Scholar 

  50. S.R. Coriell, G.B. McFadden, R.F. Sekerka, and W.J. Boettinger: J. Cryst. Growth, 1998, vol. 191, p. 276.

    Article  Google Scholar 

  51. S.R. Coriell, G.B. McFadden, and R.F. Sekerka: J. Cryst. Growth, 1999, vol. 200, p. 573.

    Article  Google Scholar 

  52. M. Backhaus-Ricoult and H. Schmalzried: Ber. Bunsenges Phys. Chem., 1985, vol. 89, p. 1323.

    CAS  Google Scholar 

  53. L. Onsager: Phys. Rev., 1931, vol. 37, p. 405; vol. 38, p. 2265.

    Article  CAS  Google Scholar 

  54. J.S. Kirkaldy: Metall. Trans. A, 1993, vol. 24A, p. 1689.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkaldy, J.S., Maugis, P. Statistical self-similarity in Rhines’ concept of unique multiphase diffusion paths on the ternary gibbs’ isotherm. Metall Mater Trans A 33, 3357–3365 (2002). https://doi.org/10.1007/s11661-002-0324-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0324-x

Keywords

Navigation