Skip to main content
Log in

Dopant particle characterization and bubble evolution in aluminum-potassium-silicon-doped molybdenum wire

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present article describes the creation of dopant inclusions in aluminum-potassium-silicon (AKS)-doped molybdenum powder and the generation of potassium bubbles in doped molybdenum wire. Molybdenum wire is used extensively in the incandescent lamp industry for coiling mandrels, filament support wires, and foil seals. The AKS-doped molybdenum wire is an important product, because it possesses greater high-temperature strength and a higher recrystallization temperature than undoped molybdenum; both of these properties are important for structural applications in lamps. The AKS-doped molybdenum wire is produced in a similar manner to AKS-doped tungsten wire, but lower processing temperatures are typically used for the production of molybdenum wire. Previous studies on AKS-doped tungsten wire have shown that the dispersion which provides the interlocking grain structure in recrystallized tungsten wire is bubbles of elemental potassium; these enhance incandescent lamp filament life. However, there is little previous work on the potassium-containing dispersion in AKS-doped molybdenum wire. In AKS-doped molybdenum, the dispersion can be either potassium bubbles, or solid oxide particles, depending on the processing method. This article will describe a series of analyses of doped molybdenum wire and its precursors, namely, doped powder and sintered ingots. The roles of high- and low-temperature sintering are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Eck: Metall, 1979, vol. 33 (8), pp. 819–23.

    CAS  Google Scholar 

  2. R. Eck: Planseeber Pulvermet, 1974, vol. 22, pp. 165–74.

    CAS  Google Scholar 

  3. T. Takebe, T. Akiyama, K. Shimatani, and M. Endoh: in Physical Metallurgy and Technology of Molybdenum and Its Alloys, K.H. Miska, M. Semchyshen, and E.P. Whelan, eds., AMAX Materials Research Center, Ann Arbor, MI, 1985, pp. 41–45.

    Google Scholar 

  4. D.J. Jones: Metall. Mater. Technol., 1973, vol. 5 (10), pp. 503–12.

    Google Scholar 

  5. D.J. Jones and A. Leach: Powder Metall., 1979, vol. 3, pp. 125–32.

    Google Scholar 

  6. The Metallurgy of Doped/Non-Sag Tungsten, E. Pink and L. Bartha, eds., Elsevier, New York, NY, 1989.

    Google Scholar 

  7. D.B. Snow: Metall. Trans., 1974, vol. 5, pp. 2375–81.

    CAS  Google Scholar 

  8. D.B. Snow: Metall. Trans., 1972, vol. 3, pp. 2553–54.

    CAS  Google Scholar 

  9. D.M. Moon and R.C. Koo: Metall. Trans., 1971, vol. 2, pp. 2115–22.

    CAS  Google Scholar 

  10. O. Horacsek: in The Metallurgy of Doped/Non-Sag Tungsten, E. Pink and L. Bartha, eds., Elsevier, New York, NY, 1989, pp. 175–88.

    Google Scholar 

  11. C.L. Briant and J.L. Walter: Acta Metall., 1988, vol. 36, pp. 2503–14.

    Article  CAS  Google Scholar 

  12. U.S. Patent Nos. 5,734,960 and 4,755,712.

  13. B.P. Bewlay, N. Lewis, and K.A. Lou: Metall. Trans. A, 1991, vol. 22A, pp. 2153–56.

    CAS  Google Scholar 

  14. B.P. Bewlay and K.A. Lou: Tungsten and Tungsten Alloys—Recent Advances, TMS Symp., New Orleans, LA, Feb. 1991, TMS, Warrendale, PA, 1991, pp. 87–93.

    Google Scholar 

  15. D.M. Moon, R. Stickler, and A.L. Wolfe: Proc. 6th Int. Plansee Sem., Metallwerk Plansee GMBH, Reutte, Austria, 1968, pp. 67–85.

    Google Scholar 

  16. S.V. Naidu, R. Nagender, and P. Rama: Phase Diagrams of Binary Tungsten Alloys, Indian Institute of Metals, Calcutta, 1991.

    Google Scholar 

  17. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

    Google Scholar 

  18. J.L. Walter, P. Rao, and R.R. Russell: Metall. Trans. A, 1975, vol. 6A, pp. 1775–84.

    CAS  Google Scholar 

  19. T.E. Dunham: Metall. Trans., 1971, vol. 2, pp. 2797–2804.

    CAS  Google Scholar 

  20. J.F. Schairer and N.L. Bowen: Bull. Soc. Geol. Finl., 1947, vol. 20, pp. 67–87.

    Google Scholar 

  21. J. Choi, H.T. Kim, and M.K. Yoo: Metall. Trans. A, 1991, vol. 22A, pp. 2155–56.

    Google Scholar 

  22. L. Brewer, R.H. Lamoreaux, R. Ferro, R. Marazza, and K. Girgis: Molybenum: Physico-Chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, Vienna, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L.E., Bewlay, B.P. & Larsen, M. Dopant particle characterization and bubble evolution in aluminum-potassium-silicon-doped molybdenum wire. Metall Mater Trans A 33, 3349–3356 (2002). https://doi.org/10.1007/s11661-002-0323-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0323-y

Keywords

Navigation