Skip to main content
Log in

Inertia welding nickel-based superalloy: Part I. Metallurgical characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article describes a quantitative study of the microstructure of nickel-based superalloy RR1000 tube structures joined by inertia welding. One as-welded and three post weld heat-treated (PWHT) conditions have been investigated. The samples were characterized mechanically by measuring the hardness profiles and microstructurally in terms of γ grain size, γ′ precipitate size and volume fraction, stored energy, and microtexture. Electron backscatter diffraction (EBSD) was used to characterize high-angle grain boundaries (HAGB) and the variation of microtexture across the weld line. The coherent γ′ precipitates were investigated over a range of scales on etched samples in a field emission gun scanning electron microscope (FEGSEM), using carbon replicas in a transmission electron microscope (TEM) and from thin slices by means of high-energy synchrotron X-rays. Dramatic changes in the microstructure were observed within 2 mm of the weld line. In this region, the hardness profile is influenced by changes in grain size, γ′ volume fraction, γ′ particle size, and the work stored in the material. Further away, the observed hardness variation is still significant although only minor microstructural changes could be observed. In this region, the correlation of microstructure and hardness is less straightforward. Here, a combination of small microstructural changes appears to give rise to a significant change in strength. No significant texture or grain distortion was observed in the extensively plastically deformed region due to recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Superalloys, Supercomposites and Superceramics, J.K. Tien and T. Caulfield, eds., Academic Press Inc. (London) Ltd., London, 1989, pp. 142–43.

    Google Scholar 

  2. The Superalloys, C.T. Sims and W.C. Hagel, eds., John Wiley, New York, NY, 1972, pp. 509–32.

    Google Scholar 

  3. R. Spinat and Y. Honnorat: in High Temperature Alloys for Gas Turbines and Other Applications, W. Betz et al., eds., Dordrecht D. Reidel, Butterworth-Heinemann, Ltd., Oxford, 1986, pp. 151–57.

    Google Scholar 

  4. M. Soucail, A. Moal, L. Nazé, E. Massoni, C. Leviallant, and Y. Bienvenu: in Superalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, 1992, pp. 847–56.

  5. M. Preuss, J.W.L. Pang, P.J. Withers, and G. Baxter: Mater. Trans A, 2002, vol. 33A, pp. 3227–34.

    CAS  Google Scholar 

  6. S.J. Hessell et al.: U.S. Patent No. 5,897,718, Apr. 27, 1999.

  7. M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85–97.

    Article  Google Scholar 

  8. P. Adam: Welding of High Strength Gas Turbine Alloys, Applied Science Publisher Ltd., London, 1978, pp. 737–68.

    Google Scholar 

  9. K.G. Schmitt-Thomas, P. Adam, H. Meisel, and R. Siede: Z. Mettalkd., 1982, vol. 73 (9), pp. 558–65.

    Google Scholar 

  10. J.P. Ferte: J. Phys. IV, 1993, vol. 3, pp. 1019–27.

    CAS  Google Scholar 

  11. Superalloys II, High Temperature Materials for Aerospace & Industrial Power, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Wiley & Sons Inc., New York, NY, 1987, pp. 221–26.

    Google Scholar 

  12. The Superalloys, C.T. Sims and W.C. Hagel, eds., John Wiley, New York, NY, 1972, p. 44.

    Google Scholar 

  13. A. Royer, P. Bastie, and M. Véron: Scripta Mater., vol. 37, 1997, pp. 1199–1205.

    Article  CAS  Google Scholar 

  14. A. Royer, P. Bastie, and M. Véron: Scripta Mater., vol. 40, 1999, pp. 955–61.

    Article  CAS  Google Scholar 

  15. A. Royer, P. Bastie, and M. Véron: Acta Mater., 1998, vol. 46, pp. 5357–68.

    Article  CAS  Google Scholar 

  16. Software and user manual at: http://www.umist.ac.uk/material/research/aluminum/frame.html.

  17. W.T. Read: Dislocations in Crystals, McGraw-Hill, New York, NY, 1953.

    Google Scholar 

  18. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975, p. 131.

    Google Scholar 

  19. Channel 4.2: HKL Technology ApS, Blaakildevej 17k, Hobro, DK-9500, Denmark.

  20. A.J. Manning: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1999, p. 114.

    Google Scholar 

  21. B. Reppich, P. Schepp, and G. Wehner: Acta Metall., 1982, vol. 30, pp. 95–104.

    Article  CAS  Google Scholar 

  22. V. Seetharaman, K.B.S. Rao, D. Sundararaman, and P. Rodriguez: Acta Metall., 1987, vol. 35, pp. 565–75.

    Article  CAS  Google Scholar 

  23. F. Torster, G. Baumeister, J. Albrecht, G. Luetjering, D. Helm, and M.A. Daeubler: Mater. Sci. Eng. A, 1997, vol. A234, pp. 189–92.

    Google Scholar 

  24. J.J. Schirra and S.H. Goetschius: Superalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 437–46.

    Google Scholar 

  25. J. Jones: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1997, p. 52.

    Google Scholar 

  26. W. Mangen and E. Nembach: Acta Metall., 1989, vol. 37, pp. 1451–63.

    Article  CAS  Google Scholar 

  27. B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1978, pp. 284–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preuss, M., Withers, P.J., Pang, J.W.L. et al. Inertia welding nickel-based superalloy: Part I. Metallurgical characterization. Metall Mater Trans A 33, 3215–3225 (2002). https://doi.org/10.1007/s11661-002-0307-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0307-y

Keywords

Navigation