Skip to main content
Log in

The influence of microstructure and environment on the crack growth behavior of powder metallurgy nickel superalloy RR1000

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A study of crack growth in vacuum and air at 725 °C (T/T m=0.6) highlights the relative importance of creep and environmental crack-tip damage mechanisms in Powder Metallurgy (P/M) disc alloy RR1000. Both of these mechanisms are associated with a transition to intergranular fracture during fatigue crack growth at 0.25 Hz. Crack growth under sustained loads reveals the precise nature of these mechanisms in RR1000. The severity of creep and environmental mechanisms is controlled by the grain-boundary microstructure and the crack-tip stress. Near-tip cavitation leads to fracture in vacuum. Sigma-phase precipitation causes an increase in crack growth rate through increased crack-tip cavity nucleation. Rapid near-tip stress relaxation induced by γ′ coarsening has a beneficial effect on the severity of this type of damage. In air, increases in crack growth rates are associated with near-tip intergranular oxidation. It is proposed that the extent of this damage and subsequent growth rates are increased by sigma-phase precipitation through enhanced oxidation due to chromium depletion and subsequent decreased passivation. Again, a beneficial effect of rapid near-tip stress relaxation due to selective γ′ coarsening is apparent and environmental damage is reduced under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Norris, P.S. Grover, B. Carter Hamilton, and A. Saxena: ASM Handbook, vol. 19 Fatigue and Fracture, S.R. Lampman, G. Davidson, F. Reidenbach, R. Buring, A. Hammel, S. Henry, W. Scott, Jr., eds., ASM, Materials Park, OH, 1996, pp. 507–19.

    Google Scholar 

  2. S.J. Hessell, W. Voice, A.W. James, S.A. Blackham, C.J. Small, and M.R. Winstone: Nickel Alloy for Turbine Engine Components, U.S. Patent US5,897,718, 1999.

  3. L.A. James: Proc. Conf. Superalloys 718, 625, 706 & Various Derivatives, Pittsburgh, PA, 1989, Loria E.A., ed., TMS, Warrendale, PA, 1989, pp. 499–515.

    Google Scholar 

  4. V. Lupinc and G. Onofrio: Mater. Sci. Eng., 1985, vol. A202, (1–2) pp. 76–83.

    Google Scholar 

  5. S.P. Lynch, T.C. Radtke, B.J. Wicks, and R.T. Byrnes: Fat. Fract. Eng. Mater. Struct., 1994, vol. 17 (3), pp. 297–311.

    Article  CAS  Google Scholar 

  6. E. Andrieu, R. Molins, H. Ghonem, and A. Pineau: Mater. Sci. Eng., 1992, vol. A154, pp. 21–28.

    CAS  Google Scholar 

  7. E. Andrieu, R. Cozar, and A. Pineau: Proc. Conf. Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA, 1989, E.A., Loria, TMS, Warrendale, PA, 1989, pp. 241–56.

    Google Scholar 

  8. K. Chang: Proc. Conf. 718, 625 & Various Derivatives 1991, Pittsburgh, PA, 1991, E.A. Loria, ed., TMS, Warrendale, PA, 1991, pp. 447–56.

    Google Scholar 

  9. J.P. Pedron and A. Pineau: Mater. Sci. Eng., 1982, vol. 56 (2), pp. 143–56.

    Article  Google Scholar 

  10. D.A. Woodford: Metall. Trans. A, 1981, vol. 12A, pp. 299–308.

    Google Scholar 

  11. R.H. Bricknell and D.A. Woodford: Metall. Trans. A, 1981, vol. 12A, pp. 425–33.

    Google Scholar 

  12. R.H. Bricknell and D.A. Woodford: Acta Metall., 1982, vol. 30 (1), pp. 257–64.

    Article  CAS  Google Scholar 

  13. B.F. Dyson: Acta Metall., 1982, vol. 30, pp. 1639–42.

    Article  CAS  Google Scholar 

  14. H.M. Lu, T.J. Delph, D.J. Dwyer, M. Gao, and R.P. Wei: Acta Metall., 1996, vol. 44 (8), pp. 3259–66.

    CAS  Google Scholar 

  15. R.C. Gifkins: Mater. Characterisation, 1994, vol. 32, pp. 59–77.

    Article  CAS  Google Scholar 

  16. J.Y. Jeon, Y.S. Lee, and Jin Yu: Int. J. Fract., 2000, vol. 101, pp. 203–14.

    Article  Google Scholar 

  17. R. Raj, and S. Baik: Met. Sci., 1980, Aug–Sept., pp. 385–407.

  18. F.H. Wu, J.L. Bassani, and V. Vitek: J. Mech. Phys. Solids, 1986, vol. 34 (5) pp. 455–75.

    Article  Google Scholar 

  19. S. Xu, X.J. Wu, A.K. Koul, and J.I. Dickson: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1039–45.

    Article  CAS  Google Scholar 

  20. D.W. Hunt and D.M. Knowles: unpublished research.

  21. S. Floreen: Metall. Trans. A, 1975, vol. 6A, pp. 1741–49.

    CAS  Google Scholar 

  22. D.E. Hall D.L. McDowell, and A. Saxena: Fat. Fract. Eng. Mater. Struct., 1998, vol. 21, pp. 387–401.

    Article  CAS  Google Scholar 

  23. D.M. Knowles and D.K. Skelton: Mater. Sci. Technol., 2001, vol. 17, pp. 1403–11.

    CAS  Google Scholar 

  24. D.W., Hunt: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 2001.

    Google Scholar 

  25. D.W. Hunt, D.K. Skelton, and D.M. Knowles: Proc. Conf. Superalloys 2000, Seven Springs, PA, Sept. 2000, T. Pollock, R. Kissinger, R. Bowman, K. Green, M. McLean, S. Olson, and J. Schirra, eds., ASM, Materials Park, OH, 2000, pp. 795–802.

    Google Scholar 

  26. R.O. Ritchie and K.J. Bathe: Int. J. Fract., 1979, vol. 15, p. 47.

    Article  Google Scholar 

  27. J.F. Knott: Proc. Conf. Fatigue Crack Growth, 1984, R.A. Smith, ed., Pergamon Press, Cambridge, United Kingdom, (1984), pp. 31–52.

    Google Scholar 

  28. H. Ghonem, T. Nicholas, and A. Pineau: Fat. Fract. Eng. Mater. Struct., 1993, vol. 16 (6), pp. 577–90.

    Article  CAS  Google Scholar 

  29. H. Ghonem and D. Zheng: Mater. Sci. Eng., 1992, vol. A150, pp. 151–60.

    CAS  Google Scholar 

  30. A.J. Strutt and K.E. Vecchio: Metall. Mater. Trans., 1999, vol. 30A, pp. 355–62.

    CAS  Google Scholar 

  31. R. Molins, J. Chassaigne, and E. Andrieu: Proc. Conf. Superalloys 718, 625, 706 & Various Derivatives, Pittsburgh, PA, 1997, E.A. Loria, ed. TMS, Warrendale, PA, 1997, pp. 655–64.

    Google Scholar 

  32. A. Pineau: Proc. Conf. Engineering against Fatigue, Sheffield, 1997, J. Beynon, M. Brown, R. Smith, T. Lindley, and B. Tomkins, eds., 1997, pp. 557–65.

  33. S. Ponnelle, B. Brethes, and A. Pineau: Proc. Conf. Temperature-Fatigue Interaction, 9th Int. Spring Meeting, Paris, May 29–31, 2001, Elsevier European Structural Integrity Society, 2001, pp. 245–54.

  34. R. Bowman and S.D. Antolovich: Proc. Conf., Superalloys 1988, Seven Springs PA, 1988, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, and S. Reichman, eds., TMS, Warrendale, PA, 1988, pp. 565–74.

    Google Scholar 

  35. D. Broek: Elementary Fracture Mechanics, 4th ed., Martinus Nijhoff Publishers, The Hague, Netherlands, 1984, p. 107.

    Google Scholar 

  36. K. Shiozawa and J.R. Weertman: Acta Metall., 1983, vol. 31 (7), pp. 993–1004.

    Article  CAS  Google Scholar 

  37. D. Hull and D.E. Rimmer: Phil. Mag., 1959, Ser. 8, vol. 8, pp. 673–83.

    Google Scholar 

  38. A. Gittins: J. Met. Sci., 1967, vol. 1, pp. 214–16.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, D.M., Hunt, D.W. The influence of microstructure and environment on the crack growth behavior of powder metallurgy nickel superalloy RR1000. Metall Mater Trans A 33, 3165–3172 (2002). https://doi.org/10.1007/s11661-002-0302-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0302-3

Keywords

Navigation