Skip to main content
Log in

Use of weibull statistics to quantify property variability in TiAl alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile experiments have been performed on specimens of four different investment-cast TiAl-based alloys with variations in casting conditions. The average ductilities obtained in these experiments vary between approximately 0.8 to 2.0 pct plastic strain to failure in tension. By using the three-parameter form of the Weibull relation, with the 0.2 pct offset yield strength as the minimum failure strength, the resulting variability in the data can be quantified and is found to be similar for those alloys with similar microstructural scale (grain size). Large variations in lamellar volume fraction, segregation, and phase distribution have a minor influence on property variability, compared to changes in the scale of the grain structure caused by either variations in cooling rate during casting or the addition of grain refiners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Larsen, B.D. Worth, S.J. Balsone, and J.W. Jones: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 821–34.

    Google Scholar 

  2. P.K. Wright: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 879–84.

    Google Scholar 

  3. D.A. Knaul, J.L. Beuth, and J.G. Milke: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 949–59.

    Article  CAS  Google Scholar 

  4. J.G. Milke, J.L. Beuth, and N.E. Biery: Exp. Mech., 2000, vol. 40, pp. 415–24.

    Article  CAS  Google Scholar 

  5. L.L. Rishel, N.E. Biery, R. Raban, V.Z. Gandelsman, T.M. Pollock, and A.W. Cramb: J. Intermetallics, 1998, vol. 6, pp. 629–36.

    Article  CAS  Google Scholar 

  6. R. Raban, L.L. Rishel, and T.M. Pollock: High Temperature Ordered Intermetallic Alloys VIII, MRS, Pittsburgh, PA, 1999, pp. 2.1.1–2.1.6.

    Google Scholar 

  7. C.M. Austin, T.J. Kelly, and S.C. Huang: in Titanium ’92, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 1065–72.

    Google Scholar 

  8. C.M. Austin and T.J. Kelly: in Structural Intermetallics, R. Darolia J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 143–50.

    Google Scholar 

  9. J.G. Milke, J.L. Beuth, N.E. Biery, and H. Tang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 417–26.

    CAS  Google Scholar 

  10. A. Glichrist and T.M. Pollock: in Structural Intermetallics 2001, K. Hemker and D.M. Dimiduk, eds., TMS, Warrendale, PA, 2001, pp. 3–11.

    Google Scholar 

  11. Modern Ceramic Engineering: Properties, Processing, and Use in Design, 2nd edition, D.W. Richerson, Marcer Dekker, New York, NY, 1992.

  12. J.S. Cuccio, J.H. Adams, and H.L. Kington: 3rd Int. Symp. on Ceramic Materials and Components for Engines, V.J. Tennery, ed., ACERS, Westerville, OH, 1988, pp. 1273–88.

    Google Scholar 

  13. N.E. Biery, M. De Graef, and T.M. Pollock: Mater. Sci. Eng., 2001, vols. A319–A321, pp. 613–17.

    Google Scholar 

  14. E.R. Trumbauer, J.R. Hellmann, D.L. Shellman, and D.A. Koss: J. Am. Ceram. Soc., 1994, vol. 77, pp. 2017–24.

    Article  CAS  Google Scholar 

  15. M. Savitz: Am. Ceram. Soc. Bull., 1999, vol. 78, pp. 53–56.

    CAS  Google Scholar 

  16. J. Besson and A. Pineau: Recent Advances in Fracture, R.K. Mahidhara, ed., TMS, Warrendale, PA, 1997, pp. 125–36.

    Google Scholar 

  17. D.J. Neville and J.F. Knott: J. Mech. Phys. Sol., 1986, vol. 34, pp. 243–91.

    Article  Google Scholar 

  18. D.S. Shih, S.-C. Huang, G.K. Scarr, H. Jang, and J.C. Chesnutt: Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 135–48.

    Google Scholar 

  19. S.-C. Huang: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 299–307.

    Google Scholar 

  20. K. Muraleedharan, L.L. Rishel, M. De Graef, A.W. Cramb, T.M. Pollock, and G.T. Gray III: in Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 215–27.

    Google Scholar 

  21. M. De Graef, N.E. Biery, L.L. Rishel, T.M. Pollock, and A. Cramb: in Gamma Titanium Alumines 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 247–54.

    Google Scholar 

  22. C.M. Austin, T.J. Kelly, K.G. McAllister, and J.C. Chestnutt: in Structural Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 413–25.

    Google Scholar 

  23. T.M. Pollock, D.R. Mumm, K. Muraleedharan, and P.L. Martin: Scripta Metall. Mater., 1996, vol. 35, pp. 1311–16.

    CAS  Google Scholar 

  24. W. Weibull: J. Appl. Mech., 1951, vol. 18, pp. 292–97.

    Google Scholar 

  25. A.W. Thompson and W.-Y. Chu: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 165–77.

    Google Scholar 

  26. G.T. Gray, P.S. Steif, and T.M. Pollock: in Structural Intermetallics 2001, K. Hemker and D.M. Dimiduk, eds, TMS, Warrendale, PA, 2001, pp. 269–77.

    Google Scholar 

  27. Y.-W. Kim: Acta Metall., 1992, vol. 40, pp. 1121–34.

    Article  CAS  Google Scholar 

  28. N.E. Biery, M. De Graef, and T.M. Pollock: in Gamma Titanium Aluminides 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 557–64.

    Google Scholar 

  29. M.G. Mendiratta, R.L. Goetz, and D.M. Dimiduk: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3903–12.

    Article  CAS  Google Scholar 

  30. J.J. Lewandowski and A.W. Thompson: Metall. Trans. A, 1986, vol. 17A, pp. 461–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biery, N., De Graef, M., Beuth, J. et al. Use of weibull statistics to quantify property variability in TiAl alloys. Metall Mater Trans A 33, 3127–3136 (2002). https://doi.org/10.1007/s11661-002-0298-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0298-8

Keywords

Navigation