Skip to main content

Advertisement

Log in

Method for measuring transformation energy and quantitative characterization of transformation-induced plasticity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A method for measuring transformation energy (E pt) of strain-induced martensite (SIM) and quantitative characterization of transformation-induced plasticity is developed using characteristics of the tensile curve of three metastable austenitic stainless steels, 10Cr18.5Ni8.5Mnl.9Si0.9, 19Cr17.5Ni7.4Mn2.3Si1.0, and 10Cr16.2Ni11.8Mn1.2Si0.7. The results show that the E pt of tested materials at −196 °C is 11.3, 14.7, and 20.1×106 J/m3, respectively; E pt remains constant in the stages of elasto-plastic instability and stress plateau of tensile curves. As the E pt, which mainly depends on chemical composition of materials, increases, M s decreases, but the minimum strainproducing M transformation, e ph, increases. The average plasticity increment (D) induced by M transformation is 0.17 to 0.20 for the metastable austenitic stainless steels, and it decreases with increasing carbon content of steels. The decrease of stacking fault energy (SFE) is beneficial to the D value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

  2. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35.

    Google Scholar 

  3. M. Cohen: Trans. TMS-AIME, 1958, vol. 208, pp. 171–83.

    Google Scholar 

  4. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904, 1905–14, and 1915–23.

    CAS  Google Scholar 

  5. G.B. Olson and M. Cohen: Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 1–30.

    Article  CAS  Google Scholar 

  6. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–57.

    CAS  Google Scholar 

  7. G.B. Olson and M. Azrin: Metall. Trans. A, 1978, vol. 9A, pp. 713–18.

    CAS  Google Scholar 

  8. T. Minote, S. Torizuka, A. Ogawa, and M. Niikura: Iron Steel Inst. Jpn. Int., 1996, vol. 36 (2), pp. 201–06.

    CAS  Google Scholar 

  9. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–52.

    CAS  Google Scholar 

  10. Zhang Wangfeng, Chen Yumei, and Zhu Jinhua: J. Xi’an Jiaotong Univ., 1999, vol. 33 (10), pp. 64–67.

    Google Scholar 

  11. Zhang Wangfeng, Chen Yumei, and Zhu Jinhua: Acta Metall. Sinica (English Lett.), 2000, vol. 13 (2), pp. 862–65.

    Google Scholar 

  12. P. Marshall: Austenitic Stainless Steel: Microstructure and Mechanical Properties, Applied Science Publishers, London, 1984, p. 27.

    Google Scholar 

  13. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W.F., Chen, Y.M. & Zhu, J.H. Method for measuring transformation energy and quantitative characterization of transformation-induced plasticity. Metall Mater Trans A 33, 3117–3120 (2002). https://doi.org/10.1007/s11661-002-0296-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0296-x

Keywords

Navigation