Skip to main content

Advertisement

Log in

The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hydrogen-environment embrittlement (HEE)-controlled stage II crack growth rate of AA 7050 (6.09 wt pct Zn, 2.14 wt pct Mg, and 2.19 wt pct Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged (UA), peak-aged (PA), and overaged (OA) conditions were tested in 90 pct relative humidity (RH) air at temperatures between 25 °C and 90 °C. At all test temperatures, an increased degree of aging (from UA to OA) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed an Arrhenius-type temperature dependence, with activation energies between 58 and 99 kJ/mol. For both the normal-copper and low-copper alloys, the fracture path was predominately intergranular at all test temperatures (25 °C to 90 °C) in each temper investigated.

Comparison of the stage II HEE crack growth rates for normal- (2.19 wt pct) and low- (0.06 wt pct) copper alloys in the peak PA aged and OA tempers showed a beneficial effect of copper additions on the stage II crack growth rate in humid air. In the 2.19 wt pct copper alloy, the significant decrease (∼10 times at 25 °C) in the stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. In the 0.06 wt pct copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor (v 0), resulting in a modest (∼2.5 times at 25 °C) decrease in the crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II HEE crack growth rates. The OA, copper-bearing alloys are not intrinsically immune to hydrogen-environment-assisted cracking, but are more resistant due to an increased apparent activation energy for stage II crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Hyatt and M.O. Speidel: “Stress-Corrosion Cracking of High-Strength Aluminum Alloys,” Report No. D6-24840, Boeing, Seattle, WA, 1970.

    Google Scholar 

  2. M.O. Speidel: in Hydrogen Embrittlement and Stress Corrosion Cracking, Gibala and Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 271–96.

    Google Scholar 

  3. F.E. Watkinson and J.C. Scully: Corr. Sci., 1971, vol. 11, pp. 179–82.

    Article  CAS  Google Scholar 

  4. L. Christodoulou and H.M. Flower: Acta Metall., 1980, vol. 28, pp. 481–87.

    Article  CAS  Google Scholar 

  5. C.D.S. Tuck: Metall. Trans. A, 1985, vol. 16A, pp. 1503–14.

    CAS  Google Scholar 

  6. G.M. Scamans, R. Alani, and P.R. Swann: Corr. Sci., 1976, vol. 16, pp. 443–59.

    Article  CAS  Google Scholar 

  7. G.M. Scamans: Aluminium, 1982, vol. 58, pp. 332–34.

    CAS  Google Scholar 

  8. G.H. Koch: Corrosion, 1979, vol. 35, pp. 73–78.

    CAS  Google Scholar 

  9. R.M. Vennett: Trans. ASM, 1969, vol. 62, p. 1007.

    CAS  Google Scholar 

  10. R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Moran, WY, 1980, p. 677.

    Google Scholar 

  11. L. Christodoulou: Ph.D. Thesis, Imperial College of Science and Technology, London, 1980.

    Google Scholar 

  12. R.E. Ricker and D.J. Duquette: Metall. Trans. A, 1988, vol. 19A, pp. 1775–83.

    CAS  Google Scholar 

  13. D.R. Lide, ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1991.

    Google Scholar 

  14. G.A. Young: Ph.D. Thesis, University of Virginia, Charlottesville, VA, 1999.

    Google Scholar 

  15. T. Do, S.J. Splinter, C. Chen, and N.S. McIntyre: Surf. Sci., 1997, vol. 397 (1–3), pp. 192–98.

    Article  Google Scholar 

  16. H.H. Uhlig: Corrosion and Corrosion Control, 3rd ed, John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  17. L.M. Young, G.A. Young, J.R. Scully, and R.P. Gangloff: Lightweight Alloys for Aerospace Applications IV, TMS, Orlando, FL, 1997.

    Google Scholar 

  18. G.L. Lewis: Thermodynamics, McGraw-Hill, New York, NY, 1961, pp. 90–114.

    Google Scholar 

  19. C.F. Shih: J. Mech. Phys. Sol., 1981, vol. 29 (4), pp. 305–26.

    Article  Google Scholar 

  20. P. Marcus and J. Oudar: in Corrosion Mechanisms in Theory and Practice, Corrosion Technology, P.A. Schweitzer, eds., Marcel Dekker, Inc., New York, NY, 1995.

    Google Scholar 

  21. J. Albrecht, A.W. Thompson, and I.M. Bernstein: Metall. Trans. A, 1979, vol. 10A, pp. 1759–66.

    CAS  Google Scholar 

  22. J. Albrecht, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1982, vol. 13A, pp. 811–20.

    Google Scholar 

  23. D.A. Hardwick, A.W. Thompson, and I.M. Bernstein: Metall. Trans. A, 1983, vol. 14A, pp. 2517–26.

    CAS  Google Scholar 

  24. D.A. Hardwick, A.W. Thompson, and I.M. Bernstein: Corr. Sci., 1988, vol. 28 (12), pp. 1127–37.

    Article  CAS  Google Scholar 

  25. P. Guyot and L. Cottignies: Acta Mater., 1996, vol. 44 (10), pp. 4161–67.

    Article  CAS  Google Scholar 

  26. F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.

    Article  CAS  Google Scholar 

  27. F.S. Lin and J.E.A. Starke: Mater. Sci. Eng., 1980, vol. 43, pp. 65–76.

    Article  CAS  Google Scholar 

  28. T.H. Sanders and E.A. Starke: Metall. Trans. A, 1976, vol. 7A, pp. 1407–18.

    CAS  Google Scholar 

  29. J.T. Staley: Metall. Trans., 1974, vol. 5, pp. 929–32.

    CAS  Google Scholar 

  30. A. Bigot et al.: Mater. Sci. Forum, 1996, vols. 217–222, pp. 695–700.

    Google Scholar 

  31. B.V.N. Rao: Metall. Trans. A, 1981, vol. 12A, pp. 1356–59.

    Google Scholar 

  32. K. Rajan, W. Wallace, and J.C. Beddoes: J. Mater. Sci., 1982, vol. 17, pp. 2817–24.

    Article  CAS  Google Scholar 

  33. G.M. Scamans, N.J.H. Holroyd, and C.D.S. Tuck: Corr. Sci., 1987, vol. 47 (4), pp. 329–47.

    Article  Google Scholar 

  34. J.R. Pickens, T.J. Langan, and J.A.S. Green: in Environment Sensitive Fracture of Metals and Alloys, United States Navy, Washington, DC, 1987.

    Google Scholar 

  35. W. Hepples, M.R. Jarrett, J.S. Crompton, and N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., ASM/NACE/TMS, Kohler, WI, 1988, pp. 383–87.

    Google Scholar 

  36. J.M. Chen: Metall. Trans. A, 1977, vol. 8A, pp. 1935–40.

    CAS  Google Scholar 

  37. C.R. Shastry and G. Judd: Metall. Trans., 1972, vol. 3, pp. 779–82.

    CAS  Google Scholar 

  38. N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., ASM/NACE/TMS, Kohler, WI, 1988, pp. 311–45.

    Google Scholar 

  39. J.T. Staley: “History of Wrought Aluminum Alloy Development,” Report No. 56-86-AS1, Alcoa, Alcoa Center, PA, 1986.

    Google Scholar 

  40. J.T. Staley, S.C. Byrne, E.L. Colvin, and K.P. Kinnear: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1587–92.

    Google Scholar 

  41. B. Sarkar, M. Marek, and E.A. Starke: Metall. Trans. A, 1981, vol. 12A, pp. 1939–43.

    Google Scholar 

  42. E.A. Starke: in Alloying, J.L. Walter, M.R. Jackson, and C.T. Sims, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 165–97.

    Google Scholar 

  43. E.A. Starke: in Aluminum Alloys—Contemporary Research and Applications, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, New York, NY, 1989, pp. 35–63.

    Google Scholar 

  44. J.E. Hatch: Aluminum Properties and Physical Metallurgy, ASM, Metals Park, OH, 1984.

    Google Scholar 

  45. N.Q. Chinh et al.: Z. Metallkd., 1997, vol. 88 (8), pp. 607–611.

    Google Scholar 

  46. R.J. Livak and J.M. Papazian: Scripta Metall., 1984, vol. 18, pp. 483–88.

    Article  CAS  Google Scholar 

  47. S. Fujikawa, T. Hara, A. Ishida, and K. Hirano: Thermochimica Acta, 1985, vol. 85, pp. 171–74.

    Article  CAS  Google Scholar 

  48. M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51.

    CAS  Google Scholar 

  49. P. Doig, P.E.J. Flewitt, and J.E. Edingtion: Corrosion, 1977, vol. 22 (6), pp. 217–21.

    Google Scholar 

  50. J. Busby, J.F. Cleave, and R.L. Cudd: J. Inst. Met., 1971, vol. 99, pp. 41–49.

    CAS  Google Scholar 

  51. T.J. Langan et al.: Corrosion, 1988, vol. 44 (3), pp. 165–69.

    CAS  Google Scholar 

  52. R. Alani and P.R. Swann: Br. Corr. J., 1975, vol. 12 (2), pp. 80–85.

    Google Scholar 

  53. L. Christodoulou and H.M. Flower: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1980, pp. 493–50.

    Google Scholar 

  54. G.M. Scamans: J. Mater. Sci., 1978, vol. 13, pp. 27–36.

    Article  CAS  Google Scholar 

  55. Light Metals 1998, P.N. Anyalebechi, ed., TMS, Warrendale, PA, 1998, pp. 827–42.

    Google Scholar 

  56. G.W. Lorimer: in Precipitation Processes in Solids, K.C. Russell and H.I. Aaronson, eds., TMS-AIME, Niagara Falls, NY, 1976, pp. 87–119.

    Google Scholar 

  57. A. Cziraki, B. Fogarassy, and I. Gerocs: in Light Materials for Transportation Systems, N.J. Kim, ed., TMS, Kyongju, Korea, 1993, pp. 391–405.

    Google Scholar 

  58. A.J. Morris, R.F. Robey, P.D. Couch, and E. Delos Rios: Mater. Sci. Forum, 1997, vol. 242, pp. 181–86.

    CAS  Google Scholar 

  59. M. Warmuzek: Mater. Sci. Forum, 1996, vols. 215–216, pp. 243–50.

    Google Scholar 

  60. D.J. Strawbridge, W. Hume-Rothery, and A.T. Little: J. Inst. Met., 1948, vol. 74, pp. 191–225.

    Google Scholar 

  61. E.A. Starke: Mater. Sci. Eng., 1977, vol. 29, pp. 99–115.

    Article  CAS  Google Scholar 

  62. E.L. Colvin: Personal communication, Aluminum Company of America, Alcoa Center, PA, 1997.

  63. R.D. Kane: “Making and Using Precrack Double Bean Stress Corrosion Specimens,” Report ASTM G01.06, ASTM, Houston, TX, 1998.

    Google Scholar 

  64. M.S. Domack: in Environmentally Assisted Cracking: Science & Engineering, “ASTM STP 1049,” W.B. Lisagor, T.W. Crooker, and B.N. Leis, eds., ASTM, Philadelphia, PA, 1990, pp. 391–409.

    Google Scholar 

  65. M.O. Speidel: in Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., NATO, Brussels, Belgium, 1971, pp. 289–344.

    Google Scholar 

  66. G.M. Scamans: Metall. Trans. A, 1980, vol. 11A, pp. 846–50.

    CAS  Google Scholar 

  67. K.N. Akhurst and T.J. Baker: Metall. Trans. A, 1981, vol. 12A, pp. 1059–70.

    Google Scholar 

  68. P.N. Anyalebechi: Scripta Metall., 1995, vol. 33 (8), pp. 1209–16.

    Article  CAS  Google Scholar 

  69. P.N. Anyalebechi: Scripta Mater., 1996, vol. 34 (4), pp. 513–17.

    Article  CAS  Google Scholar 

  70. F. Sarioglu, P. Abachi, and M. Doruk: J. Mater. Sci., 1993, vol. 28, pp. 1430–34.

    Article  CAS  Google Scholar 

  71. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1986, p. 751.

    Google Scholar 

  72. P. Shewmon: Diffusion in Solids, TMS, Warrendale, PA, 1989, p. 246.

    Google Scholar 

  73. L.M. Young and R.P. Gangloff: unpublished research, The University of Virginia, Charlottesville, VA, 1997.

  74. H. Vogt and M.O. Speidel: Corr. Sci., 1998, vol. 40 (2–3), pp. 251–70.

    Article  CAS  Google Scholar 

  75. S.M. Lee, S.I. Pyun, and Y.G. Chun: Metall. Trans. A, 1991, vol. 22A, pp. 2407–14.

    CAS  Google Scholar 

  76. J.R. Scully, G.A. Young, Jr., and S.W. Smith: Materials Science Forum, 2000, 331–337, pp. 1583–1600.

    Article  Google Scholar 

  77. A. Turnbull: in Environmentally Assisted Cracking, ASTM STP 1401, R.D. Kane, ed., ASTM, Philadelphia, PA, 2000, p. 23.

    Google Scholar 

  78. W.W. Gerberich, T. Livine, X.-F. Chen, and M. Kaczoroski: Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  79. P.S. Lam, R.L. Sindelar, and H.B. Peacock: “Vapor Corrosion of Al Cladding Alloys and Al-Uranium Fuel Materials in Storage Environments,” Report No. WSRC-TR-97-0120, Westinghouse Savannah River, SC, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, G.A., Scully, J.R. The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy. Metall Mater Trans A 33, 1167–1181 (2002). https://doi.org/10.1007/s11661-002-0218-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0218-y

Keywords

Navigation