Skip to main content

A critical-strain criterion for hydrogen embrittlement of cold-drawn, ultrafine pearlitic steel

Abstract

A stress-modified, critical-strain model of fracture-initiation toughness has been adapted to the case of hydrogen-affected pearlite shear cracking, which is a critical event in transverse fracture of cold-drawn, pearlitic steel wire. This shear cracking occurs via a process of cementite lamellae failure, followed by microvoid nucleation, growth, and linkage to create shear bands that form across pearlite colonies. The key model feature is that the intrinsic resistance to shear-band cracking at a transverse notch or crack is related to the effective fracture strain at the notch root. This fracture strain decreases with the logarithm of the diffusible hydrogen concentration (C H). Good agreement with experimental transverse fracture-initiation-toughness values was obtained when the sole adjustable parameter of the model, the critical microstructural dimension (l*), was set to the mean dimension of shearable pearlite colonies within this steel. The effect of hydrogen was incorporated through the relationship between local effective plastic strain (ɛ feff ) and C H, obtained from sharply and bluntly notched tensile specimens analyzed by finite-element analysis (FEA) to define stress and strain fields. No transition in the transverse fracture-initiation morphology was observed with increasing constraint or hydrogen concentration. Instead, shear cracking from transverse notches and precracks was enabled at lower global applied stresses when C H increased. This shear-cracking process is assisted by absorbed and trapped hydrogen, which is rationalized to either reduce the cohesive strength of the Fe/Fe3C interface, localize slip in ferrite lamellae so as to more readily enable shearing of Fe3C by dislocation pileups, or assist subsequent void growth and link-up. The role of hydrogen at these sites is consistent with the detected hydrogen trapping. Large hydrogen-trap coverages at carbides can be demonstrated using trap-binding-energy analysis when hydrogen-assisted shear cracking is observed at low applied strains.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.N. Parkins, M. Elices, V. Sanchez-Galvez, and L. Caballero: Corr. Sci., 1982, vol. 22 (5), pp. 379–405.

    Article  CAS  Google Scholar 

  2. 2.

    W.H. Hartt, C.C. Kumria, and R.J. Kessler: Corrosion, 1993, vol. 49 (5), pp. 377–85.

    CAS  Google Scholar 

  3. 3.

    W.H. Hartt, O. Chaix, R.J. Kessler, and R. Powers: Corrosion 94, NACE, Houston, TX, 1994, paper no. 291.

    Google Scholar 

  4. 4.

    J. Embury and R. Fisher: Acta Metall., 1966, vol. 14 (2), pp. 147–59.

    Article  CAS  Google Scholar 

  5. 5.

    V. Chandhok, A. Kasak, and J.P. Hirth: Trans. ASM, 1966, vol. 59, pp. 288–301.

    CAS  Google Scholar 

  6. 6.

    D.A. Porter, K.E. Easterling, and G.D.W. Smith: Acta Metall., 1978, vol. 26, pp. 1405–22.

    Article  CAS  Google Scholar 

  7. 7.

    J.J. Lewandowski and A.W. Thompson: Metall. Trans. A, 1986, vol. 17A, pp. 461–72.

    CAS  Google Scholar 

  8. 8.

    J.J. Lewandowski and A.W. Thompson: Metall. Trans. A, 1986, vol. 17A, pp. 1769–86.

    CAS  Google Scholar 

  9. 9.

    J.J. Pepe: Metall. Trans., 1973, vol. 4, pp. 2455–60.

    CAS  Google Scholar 

  10. 10.

    A. Athanassiadis, J. Boissenot, P. Brevet, D. Francois, and A. Raharinaivo: Int. J. Fract., 1981, vol. 17 (6), pp. 553–66.

    Article  CAS  Google Scholar 

  11. 11.

    K. McGuinn and J.R. Griffiths: Br. Corr. J., 1977, vol. 12 (3), pp. 152–57.

    CAS  Google Scholar 

  12. 12.

    K. McGuinn and M. Elices: Br. Corr. J., 1981, vol. 16 (3), pp. 132–39.

    CAS  Google Scholar 

  13. 13.

    L.E. Miller and G.C. Smith: J. Iron Steel Inst., 1970, vol. 208 (11), pp. 998–1005.

    Google Scholar 

  14. 14.

    Y.J. Park and I.M. Bernstein: Metall. Trans. A, 1979, vol. 10A, pp. 1653–64.

    CAS  Google Scholar 

  15. 15.

    J.J. Lewandowski and A.W. Thompson: Acta Metall., 1987, vol. 35 (7), pp. 1453–62.

    Article  CAS  Google Scholar 

  16. 16.

    J. Toribio and A. Lancha: J. of Materials Science, 1996, vol. 3(22), pp. 6015–24.

    Article  Google Scholar 

  17. 17.

    R.P. Gangloff: Corrosion Prevention and Control: 33rd Sagamore Army Materials Research Conf., Burlington, VT U.S. Army Materials Technology Laboratory, Watertown, MA, 1986, p. 64–111.

    Google Scholar 

  18. 18.

    B. Marandet: in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. Staehle, ed. National Association of Corrosion Engineers, (NACE-5), Houston, TX, 1977, pp. 774–87.

  19. 19.

    A.W. Thompson: Mater. Sci. Technol., 1985, vol. 1 (9), pp. 711–18.

    CAS  Google Scholar 

  20. 20.

    J. Toribio, A.M. Lancha, and M. Elices: Corrosion, 1991, vol. 47 (10), pp. 781–91.

    CAS  Google Scholar 

  21. 21.

    J. Toribio, A.M. Lancha, and M. Elices: Mater. Sci. Eng. A, 1991, vol. 145, pp. 167–77.

    Article  Google Scholar 

  22. 22.

    J. Toribio and A.M. Lancha: Mater. Struct., 1993, vol. 26 (1), pp. 30–37.

    Article  CAS  Google Scholar 

  23. 23.

    A. Thompson and J. Chesnutt: Metall. Trans. A, 1979, vol. 10A, pp. 1193–96.

    CAS  Google Scholar 

  24. 24.

    J. Toribio: J. Mater. Sci., 1993, vol. 28, pp. 2289–98.

    Article  CAS  Google Scholar 

  25. 25.

    N. Sarafianos: J. Mater. Sci. Lett., 1989, pp. 1486-88.

  26. 26.

    D. Langstaff, G. Meyrick, and J.P. Hirth: Corrosion, 1981, vol. 37 (8), pp. 429–37.

    CAS  Google Scholar 

  27. 27.

    H.J. Townsend: Corrosion, 1972, vol. 28 (2), pp. 39–46.

    CAS  Google Scholar 

  28. 28.

    S.M. Price: Int. Congr. on Metallic Corr., 1984, vol. 2, pp. 262–69.

    CAS  Google Scholar 

  29. 29.

    B.W. Cherry and S.M. Price: Corr. Sci., 1980, vol. 20, pp. 1163–83.

    Article  CAS  Google Scholar 

  30. 30.

    W. Hosford: Trans. TMS-AIME, 1964, vol. 230 (2), pp. 12–15.

    CAS  Google Scholar 

  31. 31.

    F.P.L. Kavishe and T.J. Baker: Mater. Sci. Technol., 1986, vol. 2 (6), pp. 583–88.

    CAS  Google Scholar 

  32. 32.

    J. Toribio, A.M. Lancha, and M. Elices: Metall. Trans. A, 1992, vol. 23A, pp. 1573–84.

    CAS  Google Scholar 

  33. 33.

    J.M. Hyzak and I.M. Bernstein: Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.

    CAS  Google Scholar 

  34. 34.

    M.C. Alonso, R.P.M. Procter et al.: Corr. Sci., 1993, vol. 34 (6), pp. 961–73.

    Article  CAS  Google Scholar 

  35. 35.

    K. McGuinn and J.R. Griffiths: Br. Corr. J., 1997, vol. 12 (3), pp. 152–57.

    Google Scholar 

  36. 36.

    D.G. Enos, A.J. Williams, Jr., and J.R. Scully: Corrosion 96, 1996, paper no. 307.

  37. 37.

    D.G. Enos, A.J. Williams, Jr., G.G. Clemeña, and J.R. Scully: Corrosion 97, 1997, paper no. 241.

  38. 38.

    D.G. Enos, A.J. Williams, Jr., and J.R. Scully: Corrosion, 1997, vol. 53 (11), pp. 891–908.

    CAS  Google Scholar 

  39. 39.

    D.G. Enos, A.J. Williams, Jr., G.G. Clemeña, and J.R. Scully: Corrosion, 1998, vol. 54 (5), pp. 389–402.

    CAS  Google Scholar 

  40. 40.

    M.A. Gaudett and J.R. Scully: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 65–79.

    Article  CAS  Google Scholar 

  41. 41.

    M. Caspers, C. Mattheck et al.: Z. Werkstofftech., 1986, vol. 17, pp. 327–33.

    Article  Google Scholar 

  42. 42.

    M. Caspers and C. Mattheck: Fatigue Fract. Eng. Mater. Struct., 1987, vol. 9 (5), pp. 329–41.

    Article  Google Scholar 

  43. 43.

    W. Blackburn: Eng. Fract. Mech., 1976, vol. 8, pp. 731–36.

    Article  Google Scholar 

  44. 44.

    A. Carpinteri: Eng. Fract. Mech., 1992, vol. 42 (6), pp. 1035–40.

    Article  Google Scholar 

  45. 45.

    A. Levan and J. Royer: Int. J. Fract., 1993, vol. 61, pp. 71–99.

    Article  Google Scholar 

  46. 46.

    E. Si: Eng. Fract. Mech., 1990, vol. 37 (4), pp. 805–12.

    Article  Google Scholar 

  47. 47.

    I. Raju and J. Newman: Fract. Mech.: 17th Volume, J. Underwood, R. Chait, and C. Smith, ASTM STP 905, ASTM, Philadelphia, PA, 1986, pp. 789–805.

    Google Scholar 

  48. 48.

    R.D. Goolsby and L.K. Austin: 7th Int. Conf. on Fracture, K. Salama, ed., Pergamon Press, Elmsford, NY, 1989, vol. 4, pp. 2423–35.

    Google Scholar 

  49. 49.

    R.S. Lillard and J.R. Scully: Corrosion, 1996, vol. 52 (2), pp. 125–37.

    CAS  Google Scholar 

  50. 50.

    P.A. Klein, R.A. Hays, P.J. Moran, and J.R. Scully: ASTM STP 1210: Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking, R.D. Kane, ed., ASTM, Philadelphia, PA, 1993, pp. 202–22.

    Google Scholar 

  51. 51.

    M.A.V. Devanathan and Z. Stachurski: Proc. R. Soc. (London), 1962, vol. 270A, pp. 90–102.

    Google Scholar 

  52. 52.

    M.A.V. Devanathan and Z. Stachurski: J. Electrochem. Soc., 1964, vol. 111 (5), pp. 619–23.

    Article  CAS  Google Scholar 

  53. 53.

    S.W. Smith and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 179–93.

    Article  CAS  Google Scholar 

  54. 54.

    W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  55. 55.

    G.W. Hong and J.Y. Lee: Mater. Sci. Eng., 1983, vol. 61, pp. 219–25.

    Article  CAS  Google Scholar 

  56. 56.

    J.Y. Lee, J.L. Lee, and Y.W. Choo: in Current Solutions to Hydrogen Problems in Steels. C.G. Interrante and G.M. Pressouyre, eds., ASM, Metals Park, OH, 1984, pp. 423–27.

    Google Scholar 

  57. 57.

    H.G. Lee and J.-Y. Lee: Acta Metall., 1984, vol. 32 (1), pp. 131–36.

    Article  CAS  Google Scholar 

  58. 58.

    K. Lee, J.-Y. Lee, and D.R. Kim: Mater. Sci. Eng., 1984, vol. 67, pp. 213–20.

    Article  CAS  Google Scholar 

  59. 59.

    K. Yamakawa: Int. Congr. on Metallic Corrosion, 1984, vol. 2, pp. 254–61.

    CAS  Google Scholar 

  60. 60.

    N.R. Quick and H.H. Johnson: Acta Metall., 1978, vol. 26, pp. 903–07.

    Article  CAS  Google Scholar 

  61. 61.

    A.J. Kumnick and H.H. Johnson: Metall. Trans., 1974, vol. 5, pp. 1199–1206.

    CAS  Google Scholar 

  62. 62.

    A.J. Griffiths and A. Turnbull: Corrosion, 2001, vol. 57 (2), pp. 165–74.

    CAS  Article  Google Scholar 

  63. 63.

    R.O. Ritchie, W.L. Server, and R.A. Wullaert: Metall. Trans. A, 1979, vol. 10A, p. 1557.

    CAS  Google Scholar 

  64. 64.

    S. Lee, L. Majno, and R.J. Asaro: Metall. Mater. Trans. A, 1995, vol. 16A, pp. 1633–48.

    Google Scholar 

  65. 65.

    N.R. Moody, R.E. Stolz, and M.W. Perra: Metall. Trans. A, 1987, vol. 18A, pp. 1469–82.

    CAS  Google Scholar 

  66. 66.

    R.O. Ritchie and A.W. Thompson: Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  67. 67.

    W.M. Garrison and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  Google Scholar 

  68. 68.

    N.R. Moody, S.L. Robinson, and M.W. Perra: Eng. Fract. Mech., 1991, vol. 39 (6), pp. 941–54.

    Article  Google Scholar 

  69. 69.

    M.J. Haynes and R.P. Gangloff: Metall. Trans. A, 1997, vol. 28A, pp. 1815–29.

    Article  CAS  Google Scholar 

  70. 70.

    J.W. Hancock and A.C. MacKenzie: J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  71. 71.

    J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 25, p. 13.

    Article  Google Scholar 

  72. 72.

    J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, p. 1.

    Article  Google Scholar 

  73. 73.

    R.M. McMeeking: J. Mech. Phys. Solids, 1977, vol. 25, p. 357.

    Article  CAS  Google Scholar 

  74. 74.

    M.J. Haynes, B.P. Somerday, C.L. Lach, and R.P. Gangloff: in Elevated Temperature Effects on Fatigue and Fracture, R.S. Piascik, R.P. Gangloff, and A. Saxena, eds., ASTM STP 1297, ASTM, Philadelphia, PA, 1997, pp. 165–90.

    Google Scholar 

  75. 75.

    F.A. McClintock: J. Appl. Mech. Ser., 1986, vol. E35, pp. 363–71.

    Google Scholar 

  76. 76.

    H. Ogawa and T. Hara: 13th Int. Corrosion Congr., Melbourne, Australia, ACA Inc., Clayton, Australia, 1996, paper no. 218.

    Google Scholar 

  77. 77.

    A. Stroh: Proc. R. Soc. London, 1954, vol. 223, pp. 404–14.

    Article  Google Scholar 

  78. 78.

    R. Oriani and P. Josephic: Acta Metall., 1979, vol. 27, pp. 997–1005.

    Article  CAS  Google Scholar 

  79. 79.

    H. Cialone and R. Asaro: Metall. Trans. A, 1979, vol. 10A, pp. 367–75.

    CAS  Google Scholar 

  80. 80.

    R. Garber, I. Bernstein, and A.W. Thompson: Metall. Trans. A, 1981, vol. 12A, pp. 225–34.

    Google Scholar 

  81. 81.

    O.A. Onyewuenyi and J.P. Hirth: Scripta Metall., 1981, vol. 15 (1), pp. 113–18.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Enos, D.G., Scully, J.R. A critical-strain criterion for hydrogen embrittlement of cold-drawn, ultrafine pearlitic steel. Metall Mater Trans A 33, 1151–1166 (2002). https://doi.org/10.1007/s11661-002-0217-z

Download citation

Keywords

  • Material Transaction
  • Cementite
  • Pearlite
  • Shear Crack
  • Tensile Axis