Skip to main content
Log in

Symmetry-breaking transitions in equilibrium shapes of coherent precipitates: Effect of elastic anisotropy and inhomogeneity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We examine the symmetry-breaking transitions in equilibrium shapes of coherent precipitates in two-dimensional (2-D) systems under a plane-strain condition with the principal misfit strain components ε* xx and ε* yy . For systems with cubic elastic moduli, we first show all the shape transitions associated with different values of t=ε* yy /ε* xx . We also characterize each of these transitions, by studying its dependence on elastic anisotropy and inhomogeneity. For systems with dilatational misfit (t=1) and those with pure shear misfit (t=−1), the transition is from an equiaxed shape to an elongated shape, resulting in a break in rotational symmetry. For systems with nondilatational misfit (−1<t<1; t ≠ 0), the transition involves a break in mirror symmetries normal to the x- and y-axes. The transition is continuous in all cases, except when 0<t<1. For systems which allow an invariant line (−1≤t<0), the critical size increases with an increase in the particle stiffness. However, for systems which do not allow an invariant line (0<t≤1), the critical size first decreases, reaches a minimum, and then starts increasing with increasing particle stiffness; moreover, the transition is also forbidden when the particle stiffness is greater than a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Doi: Progr. Mater. Sci., 1996, vol. 40, pp. 79–180.

    Article  CAS  Google Scholar 

  2. P. Fratzl, O. Penrose, and J.L. Lebowitz: J. Stat. Phys., 1999, vol. 95, pp. 1429–1503.

    Article  Google Scholar 

  3. D.M. Barnett, J.K. Lee, H.I. Aaronson, and K.C. Russell: Scripta Metall., 1974, vol. 8, pp. 1447–50.

    Article  Google Scholar 

  4. A. Pineau: Acta Metall., 1976, vol. 24, pp. 559–64.

    Article  CAS  Google Scholar 

  5. A.G. Khachaturyan: Theory of Structural Transformations in Solids, John Wiley & Sons, New York, NY, 1983.

    Google Scholar 

  6. W.C. Johnson and J.W. Cahn: Acta Metall., 1984, vol. 32, pp. 1925–33.

    Article  CAS  Google Scholar 

  7. P.W. Voorhees, G.B. McFadden, and W.C. Johnson: Acta Metall. Mater., 1992, vol. 40, pp. 2979–92.

    Article  CAS  Google Scholar 

  8. M.E. Thompson, C.S. Su, and P.W. Voorhees: Acta Metall. Mater., 1994, vol. 42, pp. 2107–22.

    Article  CAS  Google Scholar 

  9. H.-J. Jou, P.H. Leo, and J.S. Lowengrub: J. Comp. Phys., 1997, vol. 131, pp. 109–48.

    Article  Google Scholar 

  10. I. Schmidt and D. Gross: J. Mech. Phys. Solids, 1997, vol. 45, pp. 1521–49.

    Article  Google Scholar 

  11. R. Mueller and D. Gross: Comp. Mater. Sci., 1998, vol. 11, pp. 35–44.

    Article  CAS  Google Scholar 

  12. M.E. Thompson and P.W. Voorhees: Acta Mater., 1999, vol. 47, pp. 983–96.

    Article  CAS  Google Scholar 

  13. P.H. Leo, J.S. Lowengrub, and Q. Nie: J. Comp. Phys., 2000, vol. 157, pp. 44–88.

    Article  CAS  Google Scholar 

  14. C.S. Jog, R. Sankarasubramanian, and T.A. Abinandanan: J. Mech. Phys. Solids., 2000, vol. 48, pp. 2363–89.

    Article  Google Scholar 

  15. R. Sankarasubramanian: Ph.D. Thesis, Indian Institute of Science, Bangalore, India, 2000.

    Google Scholar 

  16. W.C. Johnson, M.B. Berkenpas, and D.E. Laughlin: Acta Metall., 1988, vol. 36, pp. 3149–62.

    Article  CAS  Google Scholar 

  17. Susumu Satoh and William C. Johnson: Metall. Trans. A, 1992, vol. 23A, pp. 2761–73.

    CAS  Google Scholar 

  18. G. Wulff: Z. Kristall. Min., 1901, vol. 34, pp. 449–530.

    CAS  Google Scholar 

  19. C. Herring: Structure and Properties of Solid Surfaces, Chicago University Press, Chicago, IL, 1953, p. 5.

    Google Scholar 

  20. K. Schittkowski: Ann. Op. Res., 1985–86, vol. 5, pp. 485–500.

    Article  Google Scholar 

  21. M.J. Kaufman, P.W. Voorhees, W.C. Johnson, and F.S. Biancaniello: Metall. Trans. A, 1989, vol. A20, pp. 2171–75.

    Google Scholar 

  22. A. Maheshwari, M. Meshkinpour, and A.J. Ardell: Proc. Symp. on Modelling of Coarsening and Grain Growth, C.S. Pande and S.P. Marsh, eds., TMS, Warrendale, 1993, pp. 23–33.

    Google Scholar 

  23. Y. Wang and A.G. Khachaturyan: Acta Metall. Mater., 1995, vol. 43, pp. 1837–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankarasubramanian, R., Jog, C.S. & Abinandanan, T.A. Symmetry-breaking transitions in equilibrium shapes of coherent precipitates: Effect of elastic anisotropy and inhomogeneity. Metall Mater Trans A 33, 1083–1090 (2002). https://doi.org/10.1007/s11661-002-0210-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0210-6

Keywords

Navigation