Skip to main content
Log in

Theory for growth of needle-shaped particles in multicomponent systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A solution is presented for the growth of needle-shaped particles (paraboloids of revolution) in multicomponent systems that obey Henry’s law. Interface kinetics and capillarity effects are incorporated, and it is demonstrated that the maximum velocity hypothesis cannot be sustained if it is assumed that there is local equilibrium at the interface. The particle is unable to grow with equilibrium for small supersaturations when capillarity effects are prominent and for large supersaturations when the interface kinetics effect is large. A method to obtain the lengthening rate and tip radius is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Ivanstov: Dokl. Akad. Nauk, SSSR, 1947, vol. 58, pp. 567–69.

    Google Scholar 

  2. G. Horvay and J.W. Cahn: Acta Metall., 1961, vol. 9, pp. 695–705.

    Article  CAS  Google Scholar 

  3. M. Abramowitz: Handbook of Mathematical Functions, John Wiley, New York, NY, 1965.

    Google Scholar 

  4. R. Trivedi: Acta Metall., 1970, vol. 18, pp. 287–96.

    Article  CAS  Google Scholar 

  5. R. Trivedi: Acta Metall., 1970, vol. 1, pp. 921–27.

    CAS  Google Scholar 

  6. J.W. Christian: Theory of Transformations in Metals and Alloys, 2nd ed. Pergamon Press, Oxford, United Kingdom, 1975, Part I.

    Google Scholar 

  7. P.E.J. Rivera and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 25–29.

    Google Scholar 

  8. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.

    Google Scholar 

  9. H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1985, vol. 1, pp. 497–504.

    CAS  Google Scholar 

  10. H.K.D.H. Bhadeshia: Progr. Mater. Sci., 1985, vol. 29, pp. 321–86.

    Article  CAS  Google Scholar 

  11. D.E. Coates: Metall. Trans., 1972, vol. 3, pp. 1203–12.

    CAS  Google Scholar 

  12. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 2313–25.

    CAS  Google Scholar 

  13. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 1077–86.

    CAS  Google Scholar 

  14. M.G. Hall, K.R. Kinsman, and H.I. Aaronson: Metall. Trans., 1972, vol. 3, pp. 1320–22.

    CAS  Google Scholar 

  15. J. Friedberg, L. Törndahl, and M. Hillert: Jerkontorets Ann., 1969, vol. 1953, pp. 263–76.

    Google Scholar 

  16. D.S. Wildinson: Mass Transport in Solids and Fluids, Cambridge University Press, Cambridge, United Kingdom, 2000.

    Google Scholar 

  17. N. Fujita and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1999, vol. 15, pp. 627–34.

    CAS  Google Scholar 

  18. MTDATA: Metallurgical and Thermochemical Databank, National Physical Laboratory, Teddington, Middlesex, United Kingdom, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Díaz-Del-Castillo, P.E.J., Bhadeshia, H.K.D.H. Theory for growth of needle-shaped particles in multicomponent systems. Metall Mater Trans A 33, 1075–1081 (2002). https://doi.org/10.1007/s11661-002-0209-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0209-z

Keywords

Navigation