Skip to main content
Log in

Crystallization kinetics of amorphous magnesium-rich magnesium-copper and magnesium-nickel alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Amorphous magnesium-rich alloys Mg y X1-y (X=Ni or Cu and 0.82<y<0.89) have been produced by melt spinning. The crystallization kinetics of these alloys have been determined by in situ X-ray diffraction (XRD) and isothermal and isochronal differential scanning calorimetry (DSC) combined with ex situ XRD. Microstructure analysis has been performed by means of transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Crystallization of the Mg-Cu alloys at high temperature takes place in two steps: primary crystallization of Mg, followed by simultaneous crystallization of the remaining amorphous phase to Mg and Mg2Cu. Crystallization of the Mg-Cu alloys at low temperatures takes place in one step: eutectic crystallization of Mg and Mg2Cu. Crystallization of the Mg-Ni alloys for a Mg content, y>0.85, takes place in two steps: primary crystallization of Mg and of a metastable phase (Mg∼5.5Ni, with Mg content y=0.85), followed by the decomposition of Mg∼5.5Ni. Crystallization of the Mg-Ni alloys for a Mg content y<0.85 predominantly takes place in one step: eutectic crystallization of Mg and Mg2Ni. Within the experimental window applied (i.e., 356 K<T<520 K and 0.82<y<0.89), composition dependence of the crystallization sequence in the Mg-Cu alloys and temperature dependence of the crystallization sequence in the Mg-Ni alloys has not been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: Max Planck Institute for Metals Research, Stuttgart, unpublished research, 2000.

  2. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: Max Planck Institute for Metals Research, Stuttgart, unpublished research, 2001.

  3. F. Sommer, G. Bucher, and B. Predel: J. Phys. Coll., 1980, vol. 41, pp. 563–66.

    Google Scholar 

  4. G. Friedlmeier, M. Arakawa, T. Hirai, and E. Akiba: J. Alloys Compounds, 1999, vol. 292, pp. 107–17.

    Article  CAS  Google Scholar 

  5. H. Feufel and F. Sommer: J. Alloys Compounds, 1995, vol. 224, pp. 42–54.

    Article  CAS  Google Scholar 

  6. K. Micke and H. Ipser: Monatshefte Chemie, 1996, vol. 127, pp. 7–13.

    Article  CAS  Google Scholar 

  7. V.I. Nizhenko, L.I. Floka, and G.P. Khilya: Russ. Metall., 1993, pp. 45–47.

  8. K. Schubert and K. Anderko: Z. Metallkd., 1951, vol. 42, pp. 321–25.

    Google Scholar 

  9. P. Bagnoud and P. Feschotte: Z. Metallkd., 1978, vol. 69, pp. 114–20.

    CAS  Google Scholar 

  10. F. Gingl, P. Selvam, and K. Yvon: Acta Cryst., 1993, vol. B49, pp. 201–03.

    CAS  Google Scholar 

  11. U. Köster and U. Herold: in Glassy Metals I, Ionic Structure, Electronic Transport and Crystallization, H.-J. Günterodt and H. Beck, eds., Springer-Verlag, Berlin, 1981, vol. 46, pp. 225–59.

    Google Scholar 

  12. W.A. Tiller: The Science of Crystallization, Macroscopic Phenomena and Defect Generation, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  13. I. Telleria and J.M. Barandiaran: Thermochimica Acta, 1996, vols. 280–281, pp. 279–87.

    Article  Google Scholar 

  14. W.H. Wang, Y.X. Zhuang, M.X. Pan, and Y.S. Yao: J. Appl. Phys., 2000, vol. 88, pp. 3914–18.

    Article  CAS  Google Scholar 

  15. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  16. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  17. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  18. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  19. J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  20. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, New York, NY, 1965.

    Google Scholar 

  21. O. Grong and O.R. Myhr: Acta Mater., 2000, vol. 48, pp. 445–52.

    Article  CAS  Google Scholar 

  22. W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Min. (Metall.) Eng., 1939, vol. 135, pp. 416–41.

    Google Scholar 

  23. Binary Alloy Phase Diagrams 2, T.B. Massalski, ed., ASM, Materials Park, OH, 1990.

    Google Scholar 

  24. I. Bakonyi, F. Mehner, M. Rapp, A. Cziraki, H. Kronmüller, and R. Kirchheim: Z. Mettallkd., 1995, vol. 86, pp. 619–25.

    CAS  Google Scholar 

  25. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical Recipes in C, Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

  26. International Centre of Diffraction Data (ICDD), PDF 35-0821, Pennsylvania, PA.

  27. K. Yvon, W. Jeitschko, and E. Parthe: J. Appl. Cryst., 1977, vol. 10, pp. 73–74.

    Article  Google Scholar 

  28. Atlas of Crystal Structure Types for Intermetallic Phases, J.L.C. Daams, P. Villars, and J.H.N.V. Vucht, eds., ASM, Materials Park OH, 1991.

    Google Scholar 

  29. G. Kreiner and H.F. Franzen: J. Alloys Compounds, 1995, vol. 221, pp. 15–36.

    Article  CAS  Google Scholar 

  30. B. Chabot, K. Cenzual, and E. Parthe: Acta Cryst., 1980, vol. B36, pp. 2202–05.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempen, A.T.W., Nitsche, H., Sommer, F. et al. Crystallization kinetics of amorphous magnesium-rich magnesium-copper and magnesium-nickel alloys. Metall Mater Trans A 33, 1041–1050 (2002). https://doi.org/10.1007/s11661-002-0205-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0205-3

Keywords

Navigation