Skip to main content
Log in

Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tree-ring grain formations, a common microstructural feature found in vacuum arc remelted (VAR) ingots of nickel-based superalloys, were characterized experimentally in Part I. The experimental observations led to the conclusion that tree rings are chains of fine-equiaxed grains interrupting a predominately columnar-dendritic structure. Several possible mechanisms for their formation were considered, and their implications correlated with experimental observations. The most likely mechanism was determined to be that process perturbations cause changes in the thermal (or solutal) fields ahead of the columnar-dendrite tips, temporarily altering the conditions to increase grain nucleation and, hence, forming fine-equiaxed grains. In this article, Part II, a multiscale mathematical model of the VAR process is presented that simulates the macroscopic heat and momentum transport and combines it with a mesoscopic model of the nucleation and growth of grains. Using this multiscale model, the transient development of the VAR grain structure was simulated with varying levels and durations of fluctuations in the principal process parameters: power supply, arc focus, melt rate, and the ingot-crucible heat-transfer coefficient. The simulations were shown to agree with optical and electron back-scattered diffraction (EBSD) measurements of grain morphology and crystallographic orientation. The model results predict that tree-ring structures (consistent with those observed experimentally) can be formed by process perturbations that alter the thermal field conditions at the solidification front. A sensitivity study of the effect of the different process fluctuations on the microstructure formation was performed, providing process maps predicting the range of conditions where tree rings will not form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Ballantyne and A. Mitchell: Ironmaking and Steelmaking, 1977, vol. 4, pp. 222–39.

    Google Scholar 

  2. L.A. Bertram and F.J. Zanner: Proceedings of Modeling of Casting and Welding, H.D. Brody and D. Apelian, eds., TMS-AIME, 1980, pp. 333–49.

  3. L.A. Bertram and F.J. Zanner: Proceedings of Metallurgical Applications of Magnetohydrodynamics, H.K. Moffatt and M.R.E. Proctor, eds., The Metals Society, Cambridge, United Kingdom, 1982, pp. 283–300.

    Google Scholar 

  4. A. Jardy and D. Ablitzer: Proc. Model. of Casting, Welding and Adv. Solid. Processes V, M. Rappaz, M.R. Ozgu and K.W. Mahin, eds., TMS, Davos, Switzerland, 1990, pp. 699–706.

    Google Scholar 

  5. D.K. Gartling and P.A. Sackinger: Int. J. Num. Meth. Fluids, 1997, vol. 24, pp. 1271–89.

    Article  CAS  Google Scholar 

  6. A. Jardy, L. Falk, and D. Ablitzer: Ironmaking and Steelmaking, 1992, vol. 19, pp. 226–32.

    CAS  Google Scholar 

  7. D.M. Stefanescu: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 637–50.

    CAS  Google Scholar 

  8. W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi: Acta Mater., 2000, vol. 48, pp. 43–70.

    Article  CAS  Google Scholar 

  9. S.G.R. Brown and N.B. Bruce: J. Mater. Sci., 1995, vol. 30, pp. 1144–50.

    Article  CAS  Google Scholar 

  10. M. Rappaz and C.-A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.

    Article  CAS  Google Scholar 

  11. X. Xu, W. Zhang, R.C. Atwood, P.D. Lee, and M. McLean: Proceedings of 4th. Pacific Rim International Conference on Modeling of Casting and Solidification Processes IV, C.P. Hong, J.K. Choi, and D.H. Kim, eds., Hanrimwon, Seoul, 1999, pp. 109–16.

    Google Scholar 

  12. X. Xu, R.C. Atwood, S. Sridhar, P.D. Lee, M. McLean, B. Drummings, R.M. Ward, and M.H. Jacobs: Proc. Int. Symp. on Liquid Metal Processing and Casting, A. Mitchell, L. Ridgeway, and M. Baldwin, eds., AVS, Santa Fe, NM, 1999, pp. 76–89.

    Google Scholar 

  13. M.C. Schneider and C. Beckermann: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 665–72.

    CAS  Google Scholar 

  14. L.A. Jackman, G.E. Maurer, and S. Widge: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1994, pp. 153–66.

    Google Scholar 

  15. W. Zhang P.D. Lee, and M. McLean: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 443–54.

    CAS  Google Scholar 

  16. J.P. Gu and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1357–66.

    CAS  Google Scholar 

  17. P. Auburtin, T. Wang, S.L. Cockcroft, and A. Mitchell: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 801–11.

    CAS  Google Scholar 

  18. P.D. Lee, R.M. Lothian, L.J. Hobbs, and M. McLean: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Champion, PA, 1996, pp. 435–42.

    Google Scholar 

  19. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  20. S. Wolfram: Rev. Modern Phys., 1983, vol. 55, pp. 601–44.

    Article  Google Scholar 

  21. H.W. Hesselbarth and I.R. Gobel: Acta Metall. Mater., 1991, vol. 39, pp. 2135–43.

    Article  CAS  Google Scholar 

  22. C.-A. Gandin, C. Charbon, and M. Rappaz: Proceedings of Modeling of Casting, Welding and Advanced Solidification Processes VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Palm Coast, FA, 1993, pp. 21–28.

    Google Scholar 

  23. S.G.R. Brown, T. Williams, and J.A. Spittle: Acta Metall. Mater., 1994, vol. 42, pp. 2893–98.

    Article  CAS  Google Scholar 

  24. J. Zou: Ph.D. Thesis, Simulation De La Solidification Eutectique Equiaxe, Ecole Polytechnique Federale de Lausanne, 1988.

  25. P. Thevoz, J.L. Desbiolles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    CAS  Google Scholar 

  26. C.-A. Gandin, M. Rappaz, and R. Tintillier: Metall. Trans. A, 1993, vol. 24A, pp. 467–79.

    CAS  Google Scholar 

  27. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York, NY, 1980.

    Google Scholar 

  28. F.J. Zanner, R.L. Williamson, R.P. Harrison, H.D. Flanders, R.D. Thompson, and W.C. Szeto: in Superalloy 718—Metallurgy and Applications, E.A. Loria, ed., TMS, Warrendale, PA, 1989, pp. 17–32.

    Google Scholar 

  29. M. Rappaz, C.-A. Gandin, J.L. Desbiolles, and P.H. Thevoz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 695–705.

    CAS  Google Scholar 

  30. L.A. Bertram, J.A. Brooks, and D.G. Evan: Proc. Int. Symp. on Liquid Metal Processing & Casting, A. Mitchell, L. Ridgway, and M. Baldwin, eds., AVS, Santa Fe, NM, 1999, pp. 156–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Zhang, W. & Lee, P.D. Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling. Metall Mater Trans A 33, 1805–1815 (2002). https://doi.org/10.1007/s11661-002-0189-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0189-z

Keywords

Navigation