Metallurgical and Materials Transactions A

, Volume 33, Issue 2, pp 363–371 | Cite as

A framework for modeling creep in pure metals

  • Holger Brehm
  • Glenn S. Daehn


The process of creep in pure metals is modeled as the cooperative interaction of three phenomena: the thermally activated, force-dependent release of dislocation segments from obstacles; the substructural refinement of the microstructure due to plastic deformation; and the diffusion-controlled coarsening of the substructure. Key parameters are given as approximate generic values which can be varied. It is shown that for a wide range of parameters, the model reproduces the key features of the creep of pure metals: a steady-state stress exponent near 5 is recovered, and the key microstructural-length scale is related by a power law close to the reciprocal of stress (this dependence is not a strong function of temperature at a given stress). In addition, the activation energy of steady-state creep is nearly that of self-diffusion. Thus, the model reproduces the well-known phenomenology of puremetal steady-state creep. However, the present model is based on separate microstructural phenomena, which can be independently refined and studied.


Material Transaction Applied Stress Pure Metal Stress Exponent Subgrain Size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.D. Sherby and P. Burke: Progr. Mater. Sci., 1967, vol. 13, p. 325.Google Scholar
  2. 2.
    M.E. Kassner and M.T. Perez-Prado: Progr. Mater. Sci., 2000, vol. 45, pp. 1–102.CrossRefGoogle Scholar
  3. 3.
    J. Cadek: Materials Science Monographs, Elsevier New York, NY, 1988, vol. 48.Google Scholar
  4. 4.
    H. Luthy, A.K. Miller, and O.D. Sherby: Acta Metall., 1980, vol. 28, p. 169.CrossRefGoogle Scholar
  5. 5.
    J.P. Poirier: Creep of Crystals, High Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, New York, NY, 1985.Google Scholar
  6. 6.
    O.D. Sherby and J. Weertman: Acta Metall., 1979, vol. 27, p. 387.CrossRefGoogle Scholar
  7. 7.
    R.L. Orr, O.D. Sherby, and J.E. Dorn: Trans. ASME, 1954, vol. 46, p. 113.Google Scholar
  8. 8.
    J. Weertman: J. Appl. Phys., 1955, vol. 26, p. 1213.CrossRefGoogle Scholar
  9. 9.
    J. Weertman: J. Appl. Phys., 1957, vol. 28, p. 362.CrossRefGoogle Scholar
  10. 10.
    A.K. Mukherjee: in Treatise on Materials Science and Technology, R.J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, p. 163.Google Scholar
  11. 11.
    O.D. Sherby: personal communications, 1984–88.Google Scholar
  12. 12.
    J.G. Harper and J.E. Dorn: Acta Metall., 1957, vol. 5, p. 654.CrossRefGoogle Scholar
  13. 13.
    A.J. Ardell: Acta Mater., 1997, vol. 45, pp. 2971–81.CrossRefGoogle Scholar
  14. 14.
    F.A. Mohamed and T.G. Ginter: Acta Metall., 1982, vol. 30, p. 1869.CrossRefGoogle Scholar
  15. 15.
    J. Weertman: Proc. 2nd Int. Conf. Creep and Fracture in Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1984, p. 1.Google Scholar
  16. 16.
    K.D. Challenger and J. Moteff: Metall. Trans., 1973, vol. 4, pp. 749–59.Google Scholar
  17. 17.
    C. Perdrix, Y.M. Perrin, and F. Montheillet: Mern Sci. Rev. Metall., 1981, vol. 78, p. 309.Google Scholar
  18. 18.
    M. Biberger and J.C. Gibeling: Acta Metall. Mater., 1995, vol. 43, pp. 3247–60.CrossRefGoogle Scholar
  19. 19.
    S.L. Robinson and O.D. Sherby: Acta Metall., 1969, vol. 17, p. 109.CrossRefGoogle Scholar
  20. 20.
    C.R. Barrett and O.D. Sherby: Trans. AIME, 1964, vol. 203, p. 1322.Google Scholar
  21. 21.
    P.M. Burke, W.R. Cannon, and O.D. Sherby: J. Mater. Sci., 1968.Google Scholar
  22. 22.
    J.E. Breen and J. Weertman: Trans. AIME, 1955, vol. 203, p. 1230.Google Scholar
  23. 23.
    W.D. Nix and B. Ilschner: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1980, p. 1503.Google Scholar
  24. 24.
    R.P. Carreker: J. Appl. Phys., 1950, vol. 21, pp. 1289–96.CrossRefGoogle Scholar
  25. 25.
    U.F. Kocks, A.S. Argon, and M.F. Ashby: Proc. Mater. Sci., 1975, vol. 19.Google Scholar
  26. 26.
    G.S. Daehn: Acta Mater., 2001, vol. 49 (11), pp. 2017–26.CrossRefGoogle Scholar
  27. 27.
    M.R. Staker and D.L. Holt: Acta Metall., 1972, vol. 20, p. 569.CrossRefGoogle Scholar
  28. 28.
    H.V. Atkinson: Acta Metall., 1988, vol. 36 (3), pp. 469–91.CrossRefGoogle Scholar
  29. 29.
    J.E. Burke and D. Turnbull: Progress in Metal Physics, Pergamon Press, London, 1952, vol. 3, p. 220.Google Scholar
  30. 30.
    C.S. Jayanth and P. Nash: J. Mater. Sci., 1989, vol. 24, 3041–52.CrossRefGoogle Scholar
  31. 31.
    A. Siegert: Phys. Rev. Lett., 1998, vol. 81, pp. 5481–84.CrossRefGoogle Scholar
  32. 32.
    P. Smilauer and D.D. Vvedensky: Phys. Rev. B, 1995, vol. 52 (19), pp. 14263–14272.CrossRefGoogle Scholar
  33. 33.
    L. Sung, A. Karim, J.F. Douglas, and C.C. Han: Phys. Rev. Lett., 1996, vol. 76, pp. 4368–71.CrossRefGoogle Scholar
  34. 34.
    B. Derrida: Physica D, Elsevier, New York, NY, 1997, pp. 467–77.Google Scholar
  35. 35.
    P.G. Shewmon: Diffusion in Solids, McGraw-Hill Series in Materials Science and Engineering, McGraw-Hill, New York, NY, 1963.Google Scholar
  36. 36.
    S. Takeuchi and A.S. Argon: J. Mater. Sci., 1976, vol. 11, pp. 1542–66.CrossRefGoogle Scholar
  37. 37.
    O.D. Sherby: Acta Metall., 1962, vol. 10, pp. 135–41.CrossRefGoogle Scholar
  38. 38.
    F. Garofalo: Fundamentals of Creep and Creep-Rupture in Metals, Macmillan Series in Materials Science, Macmillan, 1965.Google Scholar
  39. 39.
    H. Brehm and G.S. Daehn: A Model for Slip Creep Based on Coarsening Kinetics, to be published.Google Scholar
  40. 40.
    O.D. Sherby, R.H. Klundt, and A.K. Miller: Metall. Mater. Trans. A, 1977, vol. 8A, p. 843.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Holger Brehm
    • 1
  • Glenn S. Daehn
    • 1
  1. 1.the Department of Materials Science and EngineeringThe Ohio State UniversityColumbus

Personalised recommendations