Skip to main content
Log in

Application of a modified jogged-screw model for creep of TiAl and α-Ti alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress exponents for creep, in the range of 5, are typically associated with dislocation creep processes, normally associated with a strong tendency for subgrain formation. In this article, we will demonstrate that there are several important alloy systems that have similar stress dependence and, yet, lack this tendency for subgrain formation. Specifically, dislocations in the intermetallic compound γ-TiAl and the hexagonal close-packed (hcp) α phase of the commercial Ti alloy, Ti-6242, tend to be homogeneously distributed with a tendency for alignment along screw orientation. In both alloy systems, the screw dislocations exhibit a large density of pinning points, which detailed transmission electron microscopy (TEM) investigation indicate are locations of tall jogs. These observations suggest that the jogged-screw model for creep should be appropriate after suitable modification for the presence of these tall jogs. This modified jogged-screw (MJS) model is presented, together with a discussion of the assumptions made, and the results of this model are shown to compare favorably with experiment for both alloy systems. The possible criteria for the formation of tall jogs are also described, and the potential application of this modified model to other alloy systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Coble: J. Appl. Phys., 1963, vol. 34, pp. 1679–82.

    Article  Google Scholar 

  2. F.R.N. Nabarro: Report Conf. Strength of Solids (University of Bristol), Conf. Proc., 1948, pp. 75–90.

  3. C. Herring: J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  4. J. Harper and J.E. Dorn: Acta Metall., 1957, vol. 5, pp. 654–65.

    Article  CAS  Google Scholar 

  5. J.R. Weertman: J. Appl. Phys., 1957, vol. 28, pp. 1185–89.

    Article  Google Scholar 

  6. F.R.N. Nabarro: Phil. Mag., 1967, vol. 16, pp. 231–37.

    CAS  Google Scholar 

  7. J.R. Weertman: J. Appl. Phys., 1955, vol. 26, pp. 1213–17.

    Article  CAS  Google Scholar 

  8. W.D. Nix and B. Ilschner: 5th Int. Conf. Strength of Metals and Alloys, Conf. Proc., P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom 1979, pp. 1503–30.

    Google Scholar 

  9. H. Brehm and G. Daehn: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 363–71.

    CAS  Google Scholar 

  10. G.B. Viswanathan, V.K. Vasudevan, and M.J. Mills: Acta Mater., 1999, vol. 47, pp. 1399–1411.

    Article  CAS  Google Scholar 

  11. C.R. Barrett and W.D. Nix: Acta Metall., 1965, vol. 13, pp. 1247–58.

    Article  Google Scholar 

  12. P.B. Hirsch and D.H. Warrington: Phil. Mag., 1961, vol. 6, pp. 735–68.

    CAS  Google Scholar 

  13. N.F. Mott: Creep and Fracture of Metals at High Temperatures, Proc. NPL Symp., HMSO, London, 1956, pp. 21–24.

    Google Scholar 

  14. L. Raymond and J.E. Dorn: Trans. AIME, 1964, vol. 230, pp. 560–68.

    CAS  Google Scholar 

  15. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1982.

    Google Scholar 

  16. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. Am. Soc. Met., 1969, vol. 62, pp. 155–79.

    CAS  Google Scholar 

  17. K. Xu and R.J. Arsenault: Acta Mater., 1999, vol. 47, pp. 3023–40.

    Article  CAS  Google Scholar 

  18. H. Siethoff, W. Schroter, and K. Ahlborn: Acta Metall., 1985, vol. 33, pp. 443–48.

    Article  CAS  Google Scholar 

  19. E. Furubayashi: J. Phys. Soc. Jpn., 1969, vol. 27, pp. 130–46.

    Article  CAS  Google Scholar 

  20. G.B. Viswanathan: Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, 1997.

    Google Scholar 

  21. J. Beddoes, W. Wallace, and L. Zhao: Int. Mater. Rev., 1995, vol. 40, pp. 197–217.

    CAS  Google Scholar 

  22. T.A. Parthasarathy, M.G. Mendiratta, and D.M. Dimiduk: Scripta Mater., 1997, vol. 37, pp. 315–21.

    Article  CAS  Google Scholar 

  23. W. Sprengel, H. Nakajima, and H. Oikawa: Mater. Sci. Eng. A, 1996, vol. A213, pp. 45–50.

    CAS  Google Scholar 

  24. J.N. Wang and T.G. Nieh: Acta Mater., 1998, vol. 46, pp. 1887–1901.

    Article  CAS  Google Scholar 

  25. B. Viguier, K.J. Hemker, J. Bonneville, F. Louchet, and J.L. Martin: Phil. Mag. A, 1995, vol. 71, pp. 1295–1313.

    CAS  Google Scholar 

  26. M. Lu and K.J. Hemker: Acta Mater., 1997, vol. 45, pp. 3573–85.

    Article  CAS  Google Scholar 

  27. Y. Ishikawa and H. Oikawa: Mater. Trans., JIM (Jpn.), 1994, vol. 35, pp. 336–45.

    CAS  Google Scholar 

  28. S. Sriram, D.M. Dimiduk, P.M. Hazzledine, and V.K. Vasudevan: Phil. Mag. A, 1997, vol. 76, pp. 956–93.

    Google Scholar 

  29. F. Louchet and B. Viguier: Phil. Mag. A, 1995, vol. 71, pp. 1313–33.

    CAS  Google Scholar 

  30. G.B. Viswanathan and V.K. Vasudevan: Gamma Titanium Aluminides, TMS-AIME, 1995, pp. 967–74.

  31. S. Kroll, H. Mehrer, N. Stolwijk, C. Herzig, R. Rosenkranz, and G. Frommeyer: Z. Metallkd., 1992, vol. 83, pp. 591–95.

    CAS  Google Scholar 

  32. U. Messerschmidt, M. Bartsch, D. Haussler, M. Aindow, R. Hattenhauer, and I.P. Jones: High-Temperature Ordered Intermetallic Alloys VI. Part I, J.A. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 47–52.

    Google Scholar 

  33. J.P. Simmons, M.J. Mills, and S.I. Rao: High-Temperature Ordered Intermetallic Alloys VI. Part I, J.A. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 137–44.

    Google Scholar 

  34. S. Karthikeyan, G.B. Viswanathan, Y.-W. Kim, V.K. Vasudevan, and M.J. Mills: in ISSI-3. 3rd Int. Conf. on Structural Intermetallics, K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., TMS, Warrendale, PA, 2001, pp. 717–23.

    Google Scholar 

  35. S. Karthikeyan, G.B. Viswanathan, Y.-W. Kim, P.I. Gouma, V.K. Vasudevan, and M.J. Mills: Mater. Sci. Eng. A, 2001, in press.

  36. P.J. Bania and J.A. Hall: Titanium Science and Technology, Deutsche Gesellschaft fur Metallkunde, Oberurse, Germany, 1985, pp. 2371–78.

    Google Scholar 

  37. S. Ranganath and R.S. Mishra: Acta Mater., 1996, vol. 44, pp. 927–35.

    Article  CAS  Google Scholar 

  38. G.B. Viswanathan, R.W. Hayes, and M.J. Mills: unpublished research, 2001.

  39. M. Koppers, C. Herzig, M. Friesel, and Y. Mishin: Acta Mater., 1997, vol. 45, pp. 4181–91.

    Article  CAS  Google Scholar 

  40. A. Gershick, D.G. Pettifor, and V. Vitek: Phil. Mag. A, 1998, vol. 77, pp. 999–1012.

    Article  Google Scholar 

  41. T. Neeraj, D.H. Hou, G.S. Daehn, and M.J. Mills: Acta Mater., 2000, vol. 48, pp. 1225–38.

    Article  CAS  Google Scholar 

  42. S. Ikeno and E. Furubayashi: Phys. Status Solidi A, 1975, vol. 27, pp. 581–90.

    Article  CAS  Google Scholar 

  43. V. Vitek: Cryst. Lattice Defects, 1974, vol. 5, pp. 1–34.

    CAS  Google Scholar 

  44. S. Ikeno and E. Furubayashi: Phys. Status Solidi A, 1972, vol. 12, pp. 611–22.

    Article  CAS  Google Scholar 

  45. S. Ikeno: Phys. Status Solidi A, 1976, vol. 36, pp. 317–28.

    Article  CAS  Google Scholar 

  46. J.R. Low, Jr. and A.M. Turkalo: Acta Metall., 1962, vol. 10, pp. 215–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, G.B., Karthikeyan, S., Mills, M.J. et al. Application of a modified jogged-screw model for creep of TiAl and α-Ti alloys. Metall Mater Trans A 33, 329–336 (2002). https://doi.org/10.1007/s11661-002-0094-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0094-5

Keywords

Navigation