Skip to main content
Log in

Dislocation microstructure and internal-stress measurements by convergent-beam electron diffraction on creep-deformed Cu and Al

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep experiments were conducted on aluminum single crystals and copper polycrystals deformed within the five-power-law regime. The dislocation structure of copper, which has not been extensively characterized in the past, consists of less-well-defined subgrain walls of relatively low misorientation, typically between 0.1 and 0.3 deg, with a Frank network of dislocations within the subgrains. The aluminum, as expected, consisted of well-defined subgrain boundaries with a typical misorientation between 1.0 and 2.0 deg. The subgrains were probed from one boundary to another in copper and aluminum using convergent-beam electron diffraction (CBED). This allowed a determination of any changes in the lattice parameter, which would indicate the presence of any internal stresses. Earlier investigations by others suggested that internal stresses may be high in the vicinity of the “hard” subgrain boundaries in both loaded and unloaded specimens, based on a variety of techniques including X-ray diffraction (XRD), stress-dip tests, as well as some preliminary CBED. It was determined in this work that the lattice parameter was unchanged at the equilibrium or stress-free value within the interior of the subgrains and along (within a one-beam diameter) the subgrain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nix and B. Ilschner: Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, Pergamon, Oxford, United Kingdom, 1980, pp. 1503–30.

    Google Scholar 

  2. C.R. Barrett and O.D. Sherby: Trans. AIME, 1964, vol. 230, pp. 1322–27.

    Google Scholar 

  3. C.R. Barrett, Lytton, and O.D. Sherby: Trans. AIME, 1967, vol. 239, pp. 170–84.

    CAS  Google Scholar 

  4. D.J. Lloyd and J.D. Embury: Met. Sci., 1970, vol. 4, pp. 6–8.

    Google Scholar 

  5. Pahutova, J. Cadek, and P. Rys: Phil. Mag., 1971, vol. 23, pp. 509–17.

    CAS  Google Scholar 

  6. S.V. Raj and T.G. Langdon: Acta Metall., 1989, vol. 37, pp. 843–52.

    Article  CAS  Google Scholar 

  7. J.D. Parker and B. Wilshire: Mater. Sci. Eng., 1980, vol. 43, pp. 271–80.

    Article  CAS  Google Scholar 

  8. J.D. Parker and B. Wilshire: Met. Sci., 1978, vol. 12, pp. 453–58.

    Article  CAS  Google Scholar 

  9. M.E. Kassner and M.T. Perez-Prado: Progr. Mater. Sci., 2000, vol. 45, pp. 1–102.

    Article  CAS  Google Scholar 

  10. B. Wilshire: Nashville, TN, private communication, 2000.

  11. M.R. Staker and D.L. Holt: Acta Metall., 1972, vol. 20, pp. 509–89.

    Google Scholar 

  12. S.V. Raj and R.G. Langdon: Acta Metall., 1991, vol. 39, pp. 1823–32.

    Article  CAS  Google Scholar 

  13. S. Straub, W. Blum, H.J. Maier, T. Ungar, A. Borberly, and H. Renner: Acta Mater., 1996, vol. 44, pp. 4337–50.

    Article  CAS  Google Scholar 

  14. A.W. Sleeswyk, M.R. James, D.H. Plantinga, and W.S.T. Maathuis: Acta Metall., 1978, vol. 126, pp. 1265–71.

    Google Scholar 

  15. E. Orowan: Internal Stress and Fatigue in Metals, General Motors Symp., Elsevier, Amsterdam, 1959, p. 59.

    Google Scholar 

  16. T. Hasegawa, Y. Ikeuchi, and S. Karashima: Met. Sci., 1972, vol. 6, pp. 78–82.

    Article  CAS  Google Scholar 

  17. H. Mughrabi: Acta Metall., 1983, vol. 31, pp. 1367–79.

    Article  CAS  Google Scholar 

  18. H. Mughrabi: Mater. Sci. Eng. A, 1987, vol. 85, pp. 15–31.

    Article  CAS  Google Scholar 

  19. B. Derby and M.F. Ashby: Acta Metall., 1987, vol. 35, pp. 1349–53.

    Article  Google Scholar 

  20. W. Blum, A. Cegielska, A. Rosen, and J.L. Martin: Acta Metall., 1989, vol. 37, pp. 2439–53.

    Article  CAS  Google Scholar 

  21. J.C. Gibeling and W.D. Nix: Acta Metall., 1980, vol. 29, pp. 1769–84.

    Google Scholar 

  22. M.A. Morris and J.L. Martin: Acta Metall., 1984, vol. 32, pp. 1609–23.

    Article  CAS  Google Scholar 

  23. M.A. Morris and J.L. Martin: Acta Metall., 1984, vol. 32, pp. 549–61.

    Article  CAS  Google Scholar 

  24. S. Karashima, T. Iikubo, T. Watanabe, and H. Oikawa: Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 369–74.

    CAS  Google Scholar 

  25. A.S. Argon and S. Takeuchi: Acta Metall., 1981, vol. 29, pp. 1877–84.

    Article  CAS  Google Scholar 

  26. Lepinoux and L.P. Kubin: Phil. Mag. A, 1985, vol. 57, pp. 675–96.

    Google Scholar 

  27. M.E. Kassner, M.-T. Pérez-Prado, K.S. Vecchio, and M.A. Wall: Acta Mater., 2000, vol. 48, pp. 4247–54.

    Article  CAS  Google Scholar 

  28. C.N. Ahlquist and W.D. Nix: Acta Metall., 1971, vol. 19, pp. 373–85.

    Article  Google Scholar 

  29. W. Blum, J. Hausselt, and G. König: Acta Metall., 1976, vol. 24, pp. 293–97.

    Article  CAS  Google Scholar 

  30. Borbély, G. Hoffmann, E. Aernoudt, and T. Ungar: Acta Mater., 1997, vol. 45, pp. 89–98.

    Article  Google Scholar 

  31. Borbély, W. Blum, and T. Ungar: Mater. Sci. Eng., 2000, vol. 276, pp. 186–94.

    Article  Google Scholar 

  32. I. Gaal: Proc. 5th Int. Riso Symp., N. Hessel Andersen, M. Eldrup, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, O.B. Pedersen, and B.N. Singh, eds., Riso National Lab., Roskilde, Denmark, 1984, pp. 249–54.

    Google Scholar 

  33. M.E. Kassner, M.T. Pérez-Prado, and K.S. Vecchio: Mater. Sci. Eng., in press.

  34. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng., 1997, vol. A238, pp. 219–74.

    CAS  Google Scholar 

  35. P.B. Hirsch, A. Howie, R.B. Nicholson, and D.W. Pashley: Electron Microscopy of Thin Crystals, Butterworth and Co., London, 1965, p. 422.

    Google Scholar 

  36. J. Sutliff: Lehigh University, Bethlehem, PA, 1985.

  37. M.E. Kassner and M.E. McMahon: Metall. Trans. A, 1987, vol. 18A, pp. 835–46.

    CAS  Google Scholar 

  38. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 13, pp. 325–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassner, M.E., Pérez-Prado, M.T., Long, M. et al. Dislocation microstructure and internal-stress measurements by convergent-beam electron diffraction on creep-deformed Cu and Al. Metall Mater Trans A 33, 311–317 (2002). https://doi.org/10.1007/s11661-002-0092-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0092-7

Keywords

Navigation