Skip to main content

Advertisement

Log in

Age-hardening characteristics of aluminum alloy-hollow fly ash composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aging characteristics of aluminum alloy A356 and an aluminum alloy A356 containing hollow spherical fly ash particles were studied using optical microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, hardness tests, and compressive tests. The variation of hardness and compressive strength as a function of aging time for the composite have been reported. Since the density of the composite is lower than that of the base alloy due to the presence of hollow particles, the composites have a higher specific strength and specific hardness compared to the matrix. Even though the hardness of the as-cast composite was higher than that of the base alloy, no significant change in the aging kinetics was observed, due to the presence of spherical fly ash particles in the matrix. Aging times of the order of 104 to 105 seconds were required to reach the peak hardness (92 HRF) and compressive strength (376 MPa) in both the A356-5 wt pct fly ash composite and the matrix alloy. The possible effects of shape and hollowness of particles, the interface between the matrix and the particles, the low modulus of the particles, and the microcracks formed on the surface of hollow fly ash particles on the kinetics of the age hardening of aluminum alloy A356 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Rohatgi: JOM, 1994, Nov., pp. 55–58.

  2. R. Guo, P.K. Rohatgi, and S. Ray: Trans. Am. Foundrymen’s Soc., 1996, vol. 104, pp. 1097–1101.

    CAS  Google Scholar 

  3. K.T. Kashyyap, S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Technol., 1993, vol. 9, pp. 189–203.

    Google Scholar 

  4. K.K. Chawla: Composite Materials: Science and Engineering, 2nd ed., Springer-Verlag, New York, NY, 1998, pp. 325–34.

    Google Scholar 

  5. P. Papazian: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 2945–53.

    CAS  Google Scholar 

  6. S. Suresh, T. Christman, and Y. Sugimura: Scripta Metall., 1989, vol. 23, pp. 1599–1602.

    Article  CAS  Google Scholar 

  7. M.J. Starink and P. Van Mourik: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 665–74.

    CAS  Google Scholar 

  8. J. Wang, M. Furukawa, Z. Horita, M. Nemoto, Y. Ma, and T.G. Langdon: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 581–88.

    CAS  Google Scholar 

  9. I. Dutta, S.M. Allen, and J.L. Hafley: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2553–63.

    CAS  Google Scholar 

  10. B. Dutta and M.K. Surappa: JMR, 1997, vol. 12 (10), p. 1.

    Google Scholar 

  11. S. Ikeno, K. Kawashima, K. Matsuda, H. Anada, and S. Tada: J. Jpn. Inst. Light Met., 1990, vol. 40, pp. 501–06.

    CAS  Google Scholar 

  12. R.Q. Guo and P.K. Rohatgi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 519–25.

    CAS  Google Scholar 

  13. M. Taya, K.E. Lulay, and D.J. Llyod: Acta Metall., 1991, vol. 39 (1), pp. 73–87.

    Article  CAS  Google Scholar 

  14. G.C. Weatherly and R.B. Nicohlson: Phil. Mag., 1968, vol. 16, pp. 801–31.

    Google Scholar 

  15. K.K. Chawla: Composite Materials, 2nd ed., Springer-Verlag, New York, NY, 1998, pp. 332–35.

    Google Scholar 

  16. R.U. Vaidya and K.K. Chawla: Proc. Developments in Ceramic and Metal-Matrix Composites, K. Upadhya, ed., TMS, San Diego, CA, Mar. 1992, pp. 253–72.

    Google Scholar 

  17. P.K. Rohatgi, H. Iksan, R.Q. Guo, and X. Qiu: Proc. 60th Am. Power Conf., A.E. McBride, ed., Illinois Institute of Technology, Chicago, IL, Apr. 1998, vol. 2, pp. 878–82.

    Google Scholar 

  18. I. Dutta and D.L. Bourell: Mater. Sci. Eng., 1989, vol. A112, pp. 67–77.

    CAS  Google Scholar 

  19. N.R.M.R. Bhargava, I. Samajdar, S. Ranganathan, and M.K. Surappa: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2835–42.

    CAS  Google Scholar 

  20. S. Suresh, A. Mortensen, and A. Needleman: Fundamentals of Metal-Matrix Composites, Butterworth-Heinemann, Woburn, MA, 1993, pp. 245–46.

    Google Scholar 

  21. C.M. Friend and S.D. Luxton: J. Mater. Sci., 1998, vol. 23, pp. 3173–80.

    Article  Google Scholar 

  22. J.K. Kim and P.K. Rohatgi: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 351–58.

    CAS  Google Scholar 

  23. Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ed., ASM, Metals Park, OH, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohatgi, P.K., Gajdardziska-Josifovska, M., Robertson, D.P. et al. Age-hardening characteristics of aluminum alloy-hollow fly ash composites. Metall Mater Trans A 33, 1541–1547 (2002). https://doi.org/10.1007/s11661-002-0076-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0076-7

Keywords

Navigation