Skip to main content
Log in

Dislocation-disclination model of heterogeneous martensite nucleation in transformation-induced-plasticity steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A dislocation-disclination model is proposed, describing the heterogeneous nucleation of an embryo of hcp martensite at a tilt grain-boundary segment containing some extrinsic dislocations. The total energy gain due to hcp embryo nucleation is analyzed in detail, and the existence of both the equilibrium and critical embryo sizes under varying external conditions (temperature and shear stress) is shown. Depending on the external conditions, these characteristic embryo sizes may vary in wide ranges. So, the equilibrium size increases while the critical size decreases as the external shear stress increases and the temperature decreases. It is also demonstrated that a critical external stress exists which induces athermal embryo nucleation when the nucleation-energy barrier disappears and the terms of equilibrium and critical embryo sizes lose their significance. The critical external stress has been studied, depending on the temperature and characteristic parameters of the grain boundary where the fcc-to-hcp martensite transformation takes place. We have shown, in particular, that the critical external stress increases in direct proportion to both the grain-boundary misorientation angle and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  2. G.B. Olson and M. Azrin: Metall. Trans. A, 1978, vol. 9A, pp. 713–21.

    CAS  Google Scholar 

  3. G.B. Olson and M. Cohen: Metall. Trans. A, 1982, vol. 13A, pp. 1907–14.

    Google Scholar 

  4. C.N.R. Rao and K.J. Rao: Phase Transitions in Solids, McGraw-Hill Inc., New York, NY, 1978, pp. 100–07.

    Google Scholar 

  5. R.W.K. Honeycombe: Steels: Microstructure and Properties, Edward Arnold (Publishers) Ltd., London, 1981, pp. 90–94.

    Google Scholar 

  6. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1996, pp. 397–409.

    Google Scholar 

  7. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  8. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1905–14.

    CAS  Google Scholar 

  9. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1915–23.

    CAS  Google Scholar 

  10. J.G. Parr: J. Iron Steel Inst., 1952, vol. 171, pp. 137–41.

    CAS  Google Scholar 

  11. H.M. Otte: Acta Metall., 1957, vol. 5, pp. 614–27.

    Article  CAS  Google Scholar 

  12. B. Cina: Acta Metall., 1958, vol. 6, pp. 748–62.

    Article  CAS  Google Scholar 

  13. L. Remy: Metall. Trans. A, 1977, vol. 8A, pp. 253–58.

    CAS  Google Scholar 

  14. S.-H. Baik, J.C. Kim, K.K. Jee, W.Y. Jang, and M.C. Shin: J. Phys. IV, Colloq., 1997, vol. 7, pp. 453–58.

    Google Scholar 

  15. J.-H. Jun, S.-H. Baik, Y.-K. Lee, and C.-S. Choi: Scripta Mater., 1998, vol. 39, pp. 39–44.

    Article  CAS  Google Scholar 

  16. J.-H. Jun and C.-S. Choi: Mater. Sci. Eng. A, 1998, vol. 252A, pp. 133–38.

    Google Scholar 

  17. J.-H. Jun and C.-S. Choi: J. Mater. Sci., 1999, vol. 34, pp. 3421–25.

    Article  CAS  Google Scholar 

  18. A. Ariapour, I. Yakubtsov, and D.D. Perovic: Mater. Sci. Eng. A, 1999, vol. 262A, pp. 39–49.

    Google Scholar 

  19. H.C. Choi, T.K. Ha, H.C. Shin, and Y.W. Chang: Scripta Mater., 1999, vol. 40, pp. 1171–77.

    Article  CAS  Google Scholar 

  20. S. Cotes, A.F. Guillermet, and M. Sade: Mater. Sci. Eng. A, 1999, vols. 273A–275A, pp. 503–06.

    Google Scholar 

  21. A. Baruj, A.F. Guillermet, and M. Sade: Mater. Sci. Eng. A, 1999, vols. 273A–275A, pp. 507–11.

    Google Scholar 

  22. F. Gauzzi and R. Montanari: Mater. Sci. Eng. A, 1999, vols. 273A–275A, pp. 524–27.

    Google Scholar 

  23. Y.-K. Lee and C.-S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.

    CAS  Google Scholar 

  24. X. Lu, Z. Qin, Y. Zhang, B. Ding, and Z. Hu: Scripta Mater., 2000, vol. 42, pp. 433–37.

    Article  CAS  Google Scholar 

  25. A. Baruj, H.E. Troiani, M. Sade, and A. Fernández Guillermet: Phil. Mag. A, 2000, vol. 80A, pp. 2537–48.

    Article  Google Scholar 

  26. A. Baruj, A. Fernández Guillermet, and M. Sade: J. Phys. IV, Colloq., 1997, vol. 7, pp. 405–10.

    Google Scholar 

  27. J.-H. Jun and C.-S. Choi: J. Mater. Sci. Lett., 1998, vol. 17, pp. 629–31.

    Article  CAS  Google Scholar 

  28. J.-H. Jun, D.-K. Kong, and C.-S. Choi: Mater. Res. Bull., 1998, vol. 33, pp. 1419–25.

    Article  CAS  Google Scholar 

  29. L.D. Thompson: Mechanical Properties and Phase Transformations in Engineering Materials, TMS, Warrendale, PA, 1986, pp. 391–408.

    Google Scholar 

  30. T.N. Durlu: J. Mater. Sci. Lett., 1997, vol. 16, pp. 320–21.

    Article  CAS  Google Scholar 

  31. T.N. Durlu: J. Mater. Sci., 1999, vol. 34, pp. 2887–90.

    Article  CAS  Google Scholar 

  32. A. Sato, Y. Yamaji, and T. Mori: Acta Metall., 1986, vol. 34, pp. 287–94.

    Article  CAS  Google Scholar 

  33. M. Andersson, R. Stalmans, and J. Ågren: J. Phys. IV, Colloq., 1997, vol. 7, pp. 411–16.

    Google Scholar 

  34. A. Yu. Pasko, A.A. Likhachev, Yu.N. Koval, and V.I. Kolomytsev: J. Phys. IV, Colloq., 1997, vol. 7, pp. 435–40.

    Google Scholar 

  35. G. Guénin: J. Phys. IV, Colloq., 1997, vol. 7, pp. 467–76.

    Google Scholar 

  36. M. Andersson, R. Stalmans, and J. Ågren: Acta Mater., 1998, vol. 46, pp. 3883–91.

    Article  CAS  Google Scholar 

  37. S. Cotes, A. Fernández Guillermet, and M. Sade: J. Alloys Compounds, 1998, vol. 278, pp. 231–38.

    Article  CAS  Google Scholar 

  38. Z. Guo, Y. Rong, S. Chen, and T.Y. Hsu (Xu Zuyao): Scripta Mater., 1999, vol. 41, pp. 153–58.

    Article  CAS  Google Scholar 

  39. B. Jiang and X. Qi: Bull. Mater. Sci. (India), 1999, vol. 22, pp. 717–21.

    CAS  Google Scholar 

  40. Z. Guo, Y. Rong, S. Chen, T.Y. Hsu (Xu Zuyao), J. Hong, and X. Zhao: Mater. Trans. JIM, 1999, vol. 40, pp. 193–98.

    CAS  Google Scholar 

  41. T.Y. Hsu (Xu Zuyao): Mater. Sci. Eng. A, 1999, vols. 273A–275A, pp. 494–97.

    Google Scholar 

  42. H. Li, D. Dunne, and N. Kennon: Mater. Sci. Eng. A, 1999, vols. 273A–275A, pp. 517–23.

    Google Scholar 

  43. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys. IV, Colloq., 1997, vol. 7, pp. 383–88.

    Google Scholar 

  44. W.Y. Jang, J.I. Han, K.K. Jee, S.H. Baik, J.W. Kang, and M.C. Shin: J. Phys. IV, Colloq., 1997, vol. 7, pp. 447–52.

    Google Scholar 

  45. N. Bergeon, G. Guénin, and C. Esnouf: J. Phys. IV, Colloq., 1997, vol. 7, pp. 125–30.

    Google Scholar 

  46. N. Bergeon, G. Guénin, and C. Esnouf: Mater. Sci. Eng. A, 1998, vol. 242A, pp. 77–86, 87–95.

    Google Scholar 

  47. F. Nishimura, N. Watanabe, and K. Tanaka: Mater. Sci. Eng. A, 1998, vol. 247A, pp. 275–84.

    Google Scholar 

  48. Q. Liu, Z. Ma, and N. Gu: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1579–83.

    Article  CAS  Google Scholar 

  49. G.J. Arruda, V.T.L. Buono, and M.S. Andrade: Mater. Sci. Eng. A, 1999, vols. 273A–275A, pp. 528–32.

    Google Scholar 

  50. J.C. Li, M. Zhao, and Q. Jiang: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 581–84.

    Article  CAS  Google Scholar 

  51. N. Bergeon, S. Kajiwara, and T. Kikuchi: Acta Mater., 2000, vol. 48, pp. 4053–64.

    Article  CAS  Google Scholar 

  52. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.

    Article  CAS  Google Scholar 

  53. S. Aktürk, A. Gencer, and T.N. Durlu: J. Mater. Sci. Lett., 1997, vol. 16, pp. 389–91.

    Article  Google Scholar 

  54. W.O. Binder: Met. Prog., 1950, vol. 58, pp. 201–07.

    CAS  Google Scholar 

  55. B. Cina: J. Iron Steel Inst., 1954, vol. 177, pp. 406–22.

    Google Scholar 

  56. J.A. Venables: Phil. Mag., 1962, vol. 7, pp. 35–44.

    Google Scholar 

  57. R.P. Reed: Acta Metall., 1962, vol. 10, pp. 865–77.

    Article  CAS  Google Scholar 

  58. J.F. Breedis and W.D. Robertson: Acta Metall., 1962, vol. 10, pp. 1077–88.

    Article  CAS  Google Scholar 

  59. J. Dash and H.M. Otte: Acta Metall., 1963, vol. 11, pp. 1169–78.

    Article  CAS  Google Scholar 

  60. A.J. Goldman, W.D. Robertson, and D.A. Koss: Trans. AIME, 1964, vol. 230, pp. 240–41.

    CAS  Google Scholar 

  61. J.F. Breedis: Trans. AIME, 1964, vol. 230, pp. 1583–96.

    CAS  Google Scholar 

  62. R.P. Reed and C.J. Guntner: Trans. AIME, 1964, vol. 230, pp. 1713–20.

    Google Scholar 

  63. F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 387–96.

    CAS  Google Scholar 

  64. H. Fujita and S. Ueda: Acta Metall., 1972, vol. 20, pp. 759–67.

    Article  CAS  Google Scholar 

  65. J.W. Brooks, M.H. Loretto, and R.E. Shallman: Acta Metall., 1979, vol. 27, pp. 1828–38 and 1839–47.

    Google Scholar 

  66. J.W. Christian: Proc. R. Soc. A, 1951, vol. 206, pp. 51–64.

    Google Scholar 

  67. C.R. Houska, B.L. Averbach, and M. Cohen: Acta Metall., 1960, vol. 8, pp. 81–87.

    Article  Google Scholar 

  68. E. Votava: Acta Metall., 1960, vol. 8, pp. 901–04.

    Article  Google Scholar 

  69. F. Frey and H. Boysen: Acta Cryst. A, 1981, vol. 37A, pp. 819–26.

    Article  Google Scholar 

  70. C. Hitzenberger, H.P. Karnthaler, and A. Korner: Acta Metall., 1985, vol. 33, pp. 1293–1305.

    Article  CAS  Google Scholar 

  71. P. Huang and H.F. López: Mater. Lett., 1999, vol. 39, pp. 244–48 and 249–53.

    Article  CAS  Google Scholar 

  72. A. de J. Saldívar García, A. Maní Medrano, and A. Salinas Rodríguez: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1177–84.

    Google Scholar 

  73. S. Mahajan, M.L. Green, and D. Brasen: Metall. Trans. A, 1977, vol. 8, pp. 283–93.

    Google Scholar 

  74. T. Waitz and H.P. Karnthaler: Phys. Status Solidi (a), 1998, vol. 166, pp. 107–14.

    Article  CAS  Google Scholar 

  75. C. Hitzenberger, H.P. Karnthaler, and A. Korner: Acta Metall., 1988, vol. 36, pp. 2719–28.

    Article  CAS  Google Scholar 

  76. C. Hayzelden, K. Chattopadhyay, J.C. Barry, and B. Cantor: Phil. Mag. A, 1991, vol. 63, pp. 461–70.

    CAS  Google Scholar 

  77. T. Waitz and H.P. Karnthaler: Acta Mater., 1997, vol. 45, pp. 837–47.

    Article  CAS  Google Scholar 

  78. A.L. Roitburd: Sov. Phys. Dokl., 1981, vol. 26, pp. 92–4.

    Google Scholar 

  79. I.-W. Chen and Y.-H. Chiao: Acta Metall., 1985, vol. 33, pp. 1827–45.

    Article  CAS  Google Scholar 

  80. V.I. Levitas, A.V. Idesman, and G.B. Olson: Acta Metall., 1999, vol. 47, pp. 219–33.

    CAS  Google Scholar 

  81. J.V. Lill and J.Q. Broughton: Phys. Rev. Lett., 2000, vol. 84, pp. 5784–87.

    Article  CAS  Google Scholar 

  82. J. Ronda and G.J. Oliver: Comput. Methods Appl. Mech. Eng., 2000, vol. 189, pp. 361–417.

    Article  Google Scholar 

  83. M.Yu. Gutkin, K.N. Mikaelyan, and V.E. Verijenko: Acta Mater., 2001, vol. 49, pp. 3811–19.

    Article  CAS  Google Scholar 

  84. H.I. Aaronson and M.G. Hall: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1797–1819.

    CAS  Google Scholar 

  85. A.E. Romanov and V.I. Vladimirov: Dislocations in Solids, North Holland, Amsterdam, 1992, vol. 9, pp. 191–402.

    Google Scholar 

  86. J.P. Hirth and J. Lothe: Theory of Dislocations, John Wiley, New York, NY, 1982.

    Google Scholar 

  87. J.W. Cahn: Acta Metall., 1957, vol. 5, pp. 169–72.

    Article  CAS  Google Scholar 

  88. M.Yu. Gutkin and I.A. Ovid’ko: Phil. Mag. A, 1994, vol. 70A, pp. 561–75.

    Google Scholar 

  89. M.Yu. Gutkin, K.N. Mikaelyan, and I.A. Ovid’ko: Sov. Phys. - Solid State (USA), 1995, vol. 37, pp. 552–54.

    CAS  Google Scholar 

  90. M.Yu. Gutkin, I.A. Ovid’ko, and K.N. Mikaelyan: NanoStruct. Mater., 1995, vol. 6, pp. 779–82.

    Article  Google Scholar 

  91. M.Yu. Gutkin, K.N. Mikaelyan, and I.A. Ovid’ko: Phys. Status Solidi (a), 1996, vol. 153a, pp. 337–46.

    Article  Google Scholar 

  92. M.Yu. Gutkin, A.E. Romanov, and P. Klimanek: Local Lattice Rotations and Disclinations in Microstructures of Distorted Crystalline Materials, Proc. Int. Workshop, Raushenbach/Erzgebirge, Germany, Apr. 10–14, 2000, P. Klimanek, A.E. Romanov, and M. Seefeldt, eds., Solid State Phenomena, 2002, vol. 87, pp. 113–20.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, M.Y., Mikaelyan, K.N., Verijenko, V.E. et al. Dislocation-disclination model of heterogeneous martensite nucleation in transformation-induced-plasticity steels. Metall Mater Trans A 33, 1351–1362 (2002). https://doi.org/10.1007/s11661-002-0060-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0060-2

Keywords

Navigation