Skip to main content
Log in

Thermal-tempering analysis of bulk metallic glass plates using an instant-freezing model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The viscoelastic nature of bulk metallic glasses (BMGs), their low thermal conductivity, and the fast cooling used in their processing subject them to thermal tempering. This process leads to a residual stress state in which compression on the surface is balanced by tension in the interior. For the first time, we have calculated such stresses in metallic glasses by adapting an analytical instant-freezing model previously developed for silicate glasses. This model has been demonstrated to be reasonably accurate in predicting the final residual stresses, although, due to its very nature, it neglects transient effects. For an infinite plate geometry and employing processing parameters often used for metallic glasses, we predict that significant residual stresses can be generated in these materials during thermal tempering. Preliminary measurements conducted using the layer-removal method yield compressive residual stress values close to model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Peker and W.L. Johnson: Appl. Phys. Lett., 1993, vol. 63, pp. 2342–44.

    Article  Google Scholar 

  2. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Appl. Phys. Lett., 1997 vol. 71 (4), pp. 476–78.

    Article  CAS  Google Scholar 

  3. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson: Scripta Metall., 1994, vol. 30, pp. 429–34.

    Article  CAS  Google Scholar 

  4. R. Gardon: in Glass Science and Technology, vol. 5: Elasticity and Strength in Glasses, D.R. Uhlmann and N.J. Kreidl, eds., Academic Press, New York, NY, 1980, pp. 146–216.

    Google Scholar 

  5. E. Bakke, R. Busch, and W.L. Johnson: Appl. Phys. Lett, 1995, vol. 67 (22), pp. 3260–62.

    Article  CAS  Google Scholar 

  6. V.L. Indenbom: Z. Tekh. Fiz., 1954, vol. 24, pp. 925–28.

    CAS  Google Scholar 

  7. LI. Kitaigorodskii and V.L. Indenbom: Dokl. Akad. Nauk SSSR, 1956, vol. 108, pp. 843–45.

    CAS  Google Scholar 

  8. G.M. Bartenev: Dokl. Akad. Nauk SSSR, 1948, vol. 60, p. 257.

    CAS  Google Scholar 

  9. G.M. Bartenev: Z. Tekh. Fiz., 1948, vol. 18, pp. 383–88.

    CAS  Google Scholar 

  10. G.M. Bartenev: Z. Tekh. Fiz., 1949, vol. 19, pp. 1423–33.

    Google Scholar 

  11. B.D. Aggarwala and E. Saibel: Phys. Chem. Glasses, 1961, vol. 2, pp. 137–40.

    Google Scholar 

  12. V.L. Indenbom and L.I. Vidro: English Transl.: Sov. Phys. Solid State, 1964, vol. 6, pp. 767–72.

    Google Scholar 

  13. E.H. Lee, T.G. Rogers, and T.C. Woo: J. Am. Ceram. Soc, 1965, vol. 48, pp. 480–87.

    Article  CAS  Google Scholar 

  14. O.S. Narayanaswamy and R. Gardon: J. Am. Ceram. Soc, 1969, vol. 52, pp. 554–58.

    Article  CAS  Google Scholar 

  15. O.S. Narayanaswamy: J. Am. Ceram. Soc., 1971, vol. 54, pp. 491–98.

    Article  CAS  Google Scholar 

  16. R.B. Dandliker, R.D. Conner, and W.L. Johnson: J. Mater. Res., 1998, vol. 13 (10), pp. 2896–01.

    CAS  Google Scholar 

  17. J.P. Holman: Heat Transfer, 6th ed., McGraw-Hill, New York, NY, 1986, p. 13.

    Google Scholar 

  18. J.W. Brown and R. Churchill: Fourier Series and Boundary Value Problems, 5th ed., McGraw-Hill, New York, NY, 1993, pp. 194–96.

    Google Scholar 

  19. W. Seifert, A. Maschke, and M. Dubiel: Glastech. Ber. Sci. Technol., 1998, vol. 71, pp. 341–51.

    CAS  Google Scholar 

  20. C.C. Aydiner and E. Ustundag: California Institute of Technology, Pasadena, CA, unpublished research, 2001.

  21. R.G. Treuting and W.T. Read: J. Appl. Phys., 1951, vol. 22, pp. 130–34.

    Article  Google Scholar 

  22. M. Tejedor, J.A. Garcia, J. Carrizo, and L. Elbaile: J. Mater. Sci., 1997, vol. 32, pp. 2337–40.

    Article  CAS  Google Scholar 

  23. D.J. Demorest and D.O. Leeser: Proc. SESA, 1951, vol. XI (1), pp. 45–54.

    Google Scholar 

  24. D.O. Leeser and R.A. Daane: Proc. SESA, 1954, vol. XII (1), pp. 203–08.

    Google Scholar 

  25. Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ASTM Standard E837-89, ASTM, Philadelphia, PA, 1989.

  26. N.J. Rendler and I. Vigness: Exp. Mech., 1966, vol. 6 (12), pp. 577–86.

    Article  Google Scholar 

  27. A. Niku-Lari, J. Lu, and J.F. Flavenot: Exp. Mech., 1985, vol. 25 (6), pp. 175–85.

    Article  Google Scholar 

  28. M.T. Flaman and B.H. Manning: Exp. Mech., 1985, vol. 25 (9), pp. 205–07.

    Article  Google Scholar 

  29. G.S. Schajer: J. Eng. Mater-Tech. ASME, 1988, vol. 110, pp. 338–49.

    Article  Google Scholar 

  30. W. Cheng, I. Finnie, and Ö. Vardar: J. Eng. Mater-Tech. ASME, 1991, vol. 113, pp. 199–204.

    Google Scholar 

  31. W. Cheng, I. Finnie, and Ö. Vardar: Eng. Fract. Mech., 1992, vol. 42, pp. 97–107.

    Article  Google Scholar 

  32. W. Cheng, I. Finnie, M. Gremaud, and M.B. Prime: J. Eng. Mater-Tech. ASME, 1994, vol. 116, pp. 1–7.

    Article  Google Scholar 

  33. H.J. Schindler: Int. J. Fract, 1995, vol. 74 (2), pp. R23-R30.

    Article  Google Scholar 

  34. H.J. Schindler, W. Cheng, and I. Finnie: Exp. Mech., 1997, vol. 37 (3), pp. 272–77.

    Article  Google Scholar 

  35. M.B. Prime: Appl. Mech. Rev., 1999, vol. 52 (2), pp. 75–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydiner, C.C., Ü:Ustü:UndaG, E. & Hanan, J.C. Thermal-tempering analysis of bulk metallic glass plates using an instant-freezing model. Metall Mater Trans A 32, 2709–2715 (2001). https://doi.org/10.1007/s11661-001-1023-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-1023-8

Navigation