Skip to main content
Log in

Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study was aimed at developing low-alloy steels for nuclear reactor pressure vessels by investigating the effects of alloying elements on mechanical and fracture properties of base metals and heat-affected zones (HAZs). Four steels whose compositions were variations of the composition specification for SA 508 steel (class 3) were fabricated by vacuum-induction melting and heat treatment, and their tensile properties and Charpy impact toughness were evaluated. Microstructural analyses indicated that coarse M3C-type carbides and fine M2C-type carbides were precipitated along lath boundaries and inside laths, respectively. In the steels having decreased carbon content and increased molybdenum content, the amount of fine M2C carbides was greatly increased, while that of coarse M3C carbides was decreased, thereby leading to the improvement of tensile properties and impact toughness. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment (PWHT). These findings suggested that the low-alloy steels with high strength and toughness could be processed by decreasing carbon and manganese contents and by increasing molybdenum content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Druce and B.C. Edwards: Nucl. Energy, 1980, vol. 19, pp. 347–60.

    CAS  Google Scholar 

  2. K. Suzuki: J. Nucl. Mater., 1982, vol. 108–09, pp. 443–50.

    Article  Google Scholar 

  3. P. Brown, S.G. Druce, and J.F. Knott: Acta Metall., 1986, vol 34, pp. 1121–31.

    Article  Google Scholar 

  4. K.D. Haverkamp, K. Forch, K.-H. Piehl, and W. Witte: Nucl. Eng. Design, 1984, vol. 81, pp. 207–17.

    Article  CAS  Google Scholar 

  5. R. Havel, M. Vacek, and M. Brumovsky: ASTM STP 1170, ASTM, Philadelphia, PA, 1993, pp. 163–71.

  6. D.P.G. Lidbury and E. Morland: Int. J. Pressure Vessel Piping, 1987, vol. 29, pp. 343–428.

    Article  Google Scholar 

  7. S.G. Druce: Acta Metall., 1986, vol. 34, pp. 219–32.

    Article  CAS  Google Scholar 

  8. R.L. Bodnar, R.F. Cappellini, and R.I. Jaffee: Ironmaking and Steelmaking, 1987, vol. 14, pp. 185–94.

    CAS  Google Scholar 

  9. J.P. Naylor: Metall. Trans. A, 1979, vol. 10A, pp. 861–73.

    CAS  Google Scholar 

  10. T. Enami, S. Sato, T. Tanaka, and T. Funakoshi: Kawasaki Steel Techn. Rep., 1974, vol. 6, pp. 145–61.

    CAS  Google Scholar 

  11. N. Ohashi, M. Tanaka, T. Enami, H. Oi, and T. Sekine: Kawasaki Steel Techn. Rep., 1979, vol. 11, pp. 56–66.

    Google Scholar 

  12. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  13. H.G. Pisarski and J. Kudoh: in Welding Metallurgy of Structural Steels, J.Y. Koo, ed., TMS, Denver, CO, 1987, pp. 263–75.

    Google Scholar 

  14. S. Lee, B.C. Kim, and D. Kwon: Metall. Trans. A, 1993, vol. 24A, pp. 1133–41.

    CAS  Google Scholar 

  15. W. Austel and C. Maidorn: Nucl. Energy, 1978, vol. 17, pp. 343–52.

    CAS  Google Scholar 

  16. D. Rosenthal: Trans. ASME, 1946, Nov., pp. 849–66.

  17. S.H. Kim, S.Y. Kang, S.J. Oh, S.-J. Kwon, S. Lee, J.H. Kim, and J.H. Hong: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1107–19.

    Article  CAS  Google Scholar 

  18. K. Yoneo and A. Takao: J. Jpn. Weld. Soc., 1981, vol. 50, pp. 19–28.

    Google Scholar 

  19. S. Lee, B.C. Kim, and D. Kwon: Metall. Trans. A, 1992, vol. 23A, pp. 2803–16.

    CAS  Google Scholar 

  20. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, NY, 1996, ch. 10.

    Google Scholar 

  21. A.R. Marder: Metall. Trans. A, 1981, vol. 12A, pp. 1569–79.

    Google Scholar 

  22. X.P. Shen and R. Priestner: Metall. Trans. A, 1990, vol. 21A, pp. 2547–53.

    CAS  Google Scholar 

  23. O.M. Akselsen, J.K. Solberg, and Ø. Grong: Scand. J. Metall., 1998, vol. 17, pp. 194–200.

    Google Scholar 

  24. C.A.N. Lanzillotto and F.B. Pickering: Met. Sci., 1982, vol. 16, pp. 371–82.

    Article  CAS  Google Scholar 

  25. O.M. Akselsen, Ø. Grong, and J.K. Solberg: Mater. Sci. Technol., 1987, vol. 3, pp. 649–65.

    CAS  Google Scholar 

  26. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda: Acta Metall., 1984, vol. 32, pp. 1779–88.

    Article  CAS  Google Scholar 

  27. H.P. Shen, T.C. Lei, and J.Z. Liu: Mater. Sci. Technol., 1986, vol. 2, pp. 28–33.

    CAS  Google Scholar 

  28. N.J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12A, pp. 483–89.

    Google Scholar 

  29. A.F. Szewezyk and J. Gurland: Metall. Trans. A, 1982, vol. 13A, pp. 1821–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, S., Im, YR. et al. Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels. Metall Mater Trans A 32, 903–911 (2001). https://doi.org/10.1007/s11661-001-0347-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0347-8

Keywords

Navigation