Skip to main content
Log in

A relaxed-constraint model for the tensile behavior of polycrystal shape-memory alloy wires

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article provides a micromechanics-based theory to elucidate that the thermomechanical behavior of a polycrystal shape-memory alloy (SMA) wire is different from that of a bulk material. The study is based on the observation that a polycrystal wire cannot retain any significant amount of internal stress in the transverse direction; thus, the internal stress of its constituent grains is predominantly tensile and the transverse components can be relaxed to zero. The heterogeneous tensile internal stress is then calculated from a self-consistent relation. By this internal stress and an irreversible thermodynamic principle, the decrease of Gibbs free energy and the thermodynamic driving force for martensitic transformation in the grain is established. This leads to a kinetic equation for the evolution of the martensite phase in each constituent grain and then, by an orientational average process, the evolution of the overall phase-transformation strain of the polycrystal SMA wire. Applications of the theory to a Ti-Ni wire under a thermal cycle and under a stress cycle have led to results that are consistent with experimental data. As compared to the bulk behavior, the range of transformation temperatures for the wire is substantially narrower, and the tangent modulus of its stress-strain curves is much lower. These characteristics point to the superiority of an SMA wire over the bulk in smart-material applications and are both attributable to its reduced geometrical constraint in the transverse direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Eshelby: Proc. R. Soc. London, 1957, vol. A241, pp. 376–96.

    Google Scholar 

  2. C.M. Wayman: in Encyclopedia of Materials Science and Engineering, M.B. Bever, ed., Pergamon Press, Oxford, United Kingdom, 1986, pp. 2736–40.

    Google Scholar 

  3. Z.K. Lu and G.J. Weng: Acta Mater., 1998, vol. 46, pp. 5423–33.

    Article  CAS  Google Scholar 

  4. R. Hill: J. Mech. Phys. Solids, 1965, vol. 13, pp. 89–101.

    Article  CAS  Google Scholar 

  5. M. Berveiller and A. Zaoui: J. Mech. Phys. Solids, 1979, vol. 26, pp. 325–44.

    Article  Google Scholar 

  6. E. Kröner: Acta Metall., 1961, vol. 9, pp. 155–61.

    Article  Google Scholar 

  7. B. Budiansky and T.T. Wu: Proc. 4th U.S. Nat. Congr. on Applied Mechanics, 1962, pp. 1175–85.

  8. J.W. Hutchinson: Proc. R. Soc. London, 1970, vol. A319, pp. 247–72.

    Google Scholar 

  9. G.J. Weng: J. Appl. Mech., 1982, vol. 49, pp. 728–34.

    Article  Google Scholar 

  10. G.J. Weng: J. Mech. Phys. Solids, 1990, vol. 38, pp. 419–41.

    Article  Google Scholar 

  11. A. Bhattacharyya, T. Sakaki, and G.J. Weng: Metall. Trans. A, 1993, vol. 24A, pp. 301–14.

    CAS  Google Scholar 

  12. A. Bhattacharyya and G.J. Weng: J. Mech. Phys. Solids, 1994, vol. 42, pp. 1699–1724.

    Article  CAS  Google Scholar 

  13. Z.K. Lu and G.J. Weng: J. Mech. Phys. Solids, 1997, vol. 45, pp. 1905–28.

    Article  CAS  Google Scholar 

  14. M.S. Wechsler, D.S. Lieberman, and T.A. Read: Trans. J. Met. AIME, 1953, vol. 197, pp. 1503–15.

    Google Scholar 

  15. J.S. Bowles and J.K. Mackenzie: Acta Metall., 1954, vol. 2, pp. 129–47.

    Article  CAS  Google Scholar 

  16. A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley, New York, NY, 1983.

    Google Scholar 

  17. L. Delaey, R.V. Krishnan, H. Tas, and H. Warlimont: J. Mater. Sci., 1974, vol. 9, pp. 1521–55.

    Article  CAS  Google Scholar 

  18. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1975.

    Google Scholar 

  19. M. Cohen and C.M. Wayman: in Metallurgical Treaties, J.K. Tien and J.F. Elliott, eds., TSM-AIME, Warrendale, PA, 1981, pp. 445–68.

    Google Scholar 

  20. K. Ostuka and K. Shimizu: Int. Met. Rev., 1986, vol. 31, pp. 93–114.

    Google Scholar 

  21. C.M. Wayman: Progr. Mater. Sci., 1992, vol. 36, pp. 203–24.

    Article  CAS  Google Scholar 

  22. R.J. Salzbrenner and M. Cohen: Acta Metall., 1979, vol. 27, pp. 739–48.

    Article  CAS  Google Scholar 

  23. G.B. Stachowiak and P.G. McCormic: Acta Metall., 1981, vol. 36, pp. 291–97.

    Google Scholar 

  24. K. Otsuka, T. Sawamura, and K. Shimizu: Phys. Status Solidi A, 1971, vol. 5, pp. 457–70.

    Article  CAS  Google Scholar 

  25. H. Sakamoto, K. Meguro, A. Tanaka, and A. Imai: J. Phys. IV, 1995, vol. C8, pp. 581–86.

    Google Scholar 

  26. S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki: J. Phys., 1982, vol. 43, suppl. 12, pp. C4-255–C4-260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y.M., Weng, G.J. A relaxed-constraint model for the tensile behavior of polycrystal shape-memory alloy wires. Metall Mater Trans A 32, 305–313 (2001). https://doi.org/10.1007/s11661-001-0262-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0262-z

Keywords

Navigation