Skip to main content
Log in

Calculation of the interfacial energy of B1-type carbides and nitrides with austenite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The interfacial energy of NaCl (B1)-type carbides and nitrides that have a cube-on-cube orientation relationship with austenite was calculated using a discrete lattice-plane (DLP), nearest-neighbor broken-bond (NNBB) method. The required bond energies were evaluated from Miedema’s semiempirical model for alloys and available thermodynamic data. For Ti, V, Zr, and Nb carbides and nitrides, a significant chemical interfacial energy arises from the large difference in the concentration of nonmetallic atoms between austenite and the compound phase. In contrast to binary fcc/fcc cases, where (111)-type interfaces have the smallest interfacial energy, (100)- and (111)-type interfaces have been found to have the smallest and the largest energy, respectively, of all orientations. The structural component of the interfacial energy arising out of lattice misfit is likely to be larger than the chemical component for these compounds. The orientation dependence of the total interfacial energy and the associated Wulff construction indicate that, due to the retention of the strong anisotropy of the chemical interfacial energy, the equilibrium shape of these B1 compounds is a cube, possibly with facets at corners and edges over a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Howe: Int. Mater. Rev., 1993, vol. 38, pp. 233–56 and pp. 257–71.

    CAS  Google Scholar 

  2. T. Gladman: HSLA Steels: Processing, Properties and Applications, Proc. 2nd Int. Conf. on HSLA Steels, G. Tither and S. Zhang, eds., Beijing, TMS-AIME, Warrendale, PA, 1992, pp. 3–14.

    Google Scholar 

  3. O. Grong and D.K. Matlock: Int. Met. Rev., 1986, vol. 31, pp. 27–48.

    CAS  Google Scholar 

  4. D.J. Abson: Weld. World, 1989, vol. 27, pp. 11–28.

    Google Scholar 

  5. P.T. Howell and R.W.K. Honeycombe: Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS-AIME, Warrendale, PA, 1982, pp. 399–425.

    Google Scholar 

  6. M. Mizuno, I. Tanaka, and H. Adachi: Acta Mater., 1998, vol. 46, pp. 1637–45.

    Article  CAS  Google Scholar 

  7. T. Furuhara, N. Sugita, and T. Maki: Interface Science and Materials Interconnection, Proc. 8th Int. Conf. on Intragranular and Interphase Boundaries in Materials, Japan Institute of Metals, Toyama, Japan, 1996, pp. 363–66.

    Google Scholar 

  8. D. Turnbull: Impurities and Imperfections, ASM, Metals Park, OH, 1955, p. 121.

    Google Scholar 

  9. J.K. Mackenzie and J.F. Nicholas: J. Phys. Chem. Solids, 1962, vol. 23, pp. 197–205.

    Article  Google Scholar 

  10. J.F. Nicholas: Aust. J. Phys., 1968, vol. 21, pp. 21–34.

    CAS  Google Scholar 

  11. Y.W. Lee and H.I. Aaronson: Acta Metall., 1980, vol. 28, pp. 539–48.

    Article  Google Scholar 

  12. R.V. Ramanujan, J.K. Lee, F.K. LeGoues, and H.I. Aaronson: Acta Metall., 1989, vol. 37, pp. 3051–59.

    Article  Google Scholar 

  13. S.A. Dregia and P. Wynblatt: Acta Metall. Mater., 1991, vol. 29, pp. 771–78.

    Google Scholar 

  14. Z.-G. Yang and M. Enomoto: Acta Mater., 1999, vol. 47, pp. 4514–24.

    Article  Google Scholar 

  15. J.H. van der Merwe: J. Appl. Phys., 1963, vol. 34, pp. 117–22.

    Article  Google Scholar 

  16. A.H. Cottrell: Mater. Sci. Technol., 1994, vol. 10, pp. 22–26.

    CAS  Google Scholar 

  17. A.H. Cottrell: Mater. Sci. Technol., 1994, vol. 10, pp. 788–92.

    CAS  Google Scholar 

  18. A.H. Cottrell: Mater. Sci. Technol., 1995, vol. 11, pp. 100–03.

    CAS  Google Scholar 

  19. C.H.P. Lupis: Chemical Thermodynamics of Materials, North-Holland, New York, NY, 1983, p. 477.

    Google Scholar 

  20. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals, North-Holland, New York, NY, 1988.

    Google Scholar 

  21. H. Bakker: Enthalpies in Alloys, Trans Tech Publications Ltd., Aedemannsdorf, Switzerland, 1998.

    Google Scholar 

  22. K.C.H. Kumar, P. Wollants, and L. Delaey: CALPHAD, 1994, vol. 18, pp. 223–34.

    Article  CAS  Google Scholar 

  23. W. Huang: Z. Metallkd., 1991, vol. 82, pp. 391–401.

    CAS  Google Scholar 

  24. W. Huang: Z. Metallkd., 1990, vol. 81, pp. 397–404.

    CAS  Google Scholar 

  25. I. Barin: Thermodynamic Data of Pure Substances, VCH Verlagsgesellschafe mbH, Weinheim, 1989.

    Google Scholar 

  26. J.S. Kirkaldy and G.R. Purdy: Can J. Phys., 1962, vol. 40, pp. 202–07.

    CAS  Google Scholar 

  27. N. Sugita: Master’s Thesis, Kyoto University, Kyoto, 1996.

    Google Scholar 

  28. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger, Melbourne, FL, 1992.

    Google Scholar 

  29. G. Spanos: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1989.

    Google Scholar 

  30. G.V. Samsonov and I.M. Vinitskii: Handbook of Refractory Compounds, Plenum Press, New York, NY, 1980.

    Google Scholar 

  31. G. Simmons and H. Wang: Single Crystal Elastic Const., 2nd ed., MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  32. F.L. Galasso: Structure and Properties of Inorganic Solids, Pergamon Press, Oxford, United Kingdom, 1970.

    Google Scholar 

  33. L.V. Katerinikov, S.M. Bamiruyikov, Z.G., Gariakubalov, and A.E. Kamitanov: A Handbook of High Melting Point Materials, Metallurgy Press, Moscow, 1969.

    Google Scholar 

  34. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Company, Reading, MA, 1975, p. 155.

    Google Scholar 

  35. W.J. Liu and J.J. Jonas: Proc. Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Toyko, 1988, pp. 90–97.

  36. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 829–35.

    CAS  Google Scholar 

  37. F. Ishikawa, T. Takahashi, and T. Ochi: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 929–38.

    CAS  Google Scholar 

  38. K. Yamamoto, T. Hasegawa, and J. Takamura: Tetsu-to-Hagané, 1993, vol. 79, pp. 1169–175.

    CAS  Google Scholar 

  39. H. Mabuchi, R. Uemori, and M. Fujioka: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1406–412.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z.G., Enomoto, M. Calculation of the interfacial energy of B1-type carbides and nitrides with austenite. Metall Mater Trans A 32, 267–274 (2001). https://doi.org/10.1007/s11661-001-0258-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0258-8

Keywords

Navigation