Skip to main content
Log in

Environment-sensitive fracture of iron aluminides during cyclic crack growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study investigates the fatigue-crack propagation resistance of an FeAl-based alloy, with a special emphasis placed on the analysis of the mechanisms involved in environmentally assisted crack growth. To this end, a series of tests have been conducted at room temperature in air, in high and low vacuum, and in argon. The results reveal a significant fatigue-crack growth (FCG) enhancement when the material is fatigued in a moist environment. This enhancement may, however, be inhibited by oxygen in the case of a low water-vapor partial pressure. Besides, the analysis of the results obtained under various exposure conditions suggests that the FCG enhancement in air is mostly controlled by water-vapor adsorption, which reduces the energy required to create a unit cracked area. Examination of dislocation structures within the plastic zone reveals a lower extent of plasticity in air, consistent with this mechanism. Predictions obtained by a model of adsorption-assisted propagation provide an additional support for the adsorption assumption. Finally, an FCG growth law is proposed to describe the intrinsic resistance as observed in inert environments and to account for the mechanism operative in fatigue-crack propagation in ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Castagna and N.S. Stoloff: Scripta Metall. Mater., 1992, vol. 26, pp. 673–78.

    Article  CAS  Google Scholar 

  2. N.S. Stoloff and C.T. Liu: Intermetallics, 1994, vol 2, pp. 75–87.

    Article  CAS  Google Scholar 

  3. N.S. Stoloff: Iron Steel Inst. Jpn., 1997 vol. 37, pp. 1197–1209.

    CAS  Google Scholar 

  4. D.A. Alven and N.S. Stoloff: Scripta Metall. Mater., 1996, vol. 34, pp. 1937–42.

    CAS  Google Scholar 

  5. D.A. Alven and N.S. Stoloff: Corrosion-Deformation Interactions CDI ’96, Nice, France 1996, T. Magnin, ed., The Institute of Materials, London, pp. 254–61.

    Google Scholar 

  6. G. Hénaff and A. Tonneau: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 557–67.

    Article  Google Scholar 

  7. R.P. Wei and G.W. Simmons: Int. J. Fract., 1981, vol. 17, pp. 235–47.

    Article  CAS  Google Scholar 

  8. G. Hénaff and J. Petit: Phys. Mech. Mater., 1996, vol. 32, pp. 69–88.

    Google Scholar 

  9. A. Tonneau, G. Hénaff, M. Gerland, and J. Petit: Mater. Sci. Eng. A, 1998, vol. A256, pp. 256–64.

    CAS  Google Scholar 

  10. G. Hénaff, S.A. Cohen, C. Mabru, and J. Petit: Scripta Mater., 1996, vol. 34, pp. 1449–54.

    Article  Google Scholar 

  11. D.A. Alven and N.S. Stoloff: Mater. Sci. Eng. A-Struct. Mater., 1997, vol. 240, pp. 362–68.

    Google Scholar 

  12. A. Castagna and N.S. Stoloff: Mater. Sci. Eng. A-Struct. Mater., 1995, vol. 193, pp. 399–406.

    Google Scholar 

  13. G. Hénaff, K. Marchal, and J. Petit: Acta Metall. Mater., 1995, vol. 43, pp. 2931–42.

    Article  Google Scholar 

  14. J. Petit and G. Hénaff: Scripta Metall., 1991, vol. 25, pp. 2683–87.

    Article  CAS  Google Scholar 

  15. C. Mabru, D. Bertheau, S. Pautrot, J. Petit, and G. Hénaff: Eng. Fract. Mech., 1999, vol. 64, pp. 23–47.

    Article  Google Scholar 

  16. M.R. Achter: Scripta Metall., 1968, vol. 2, pp. 525–28.

    Article  Google Scholar 

  17. F.J. Bradshaw: Scripta Metall., 1967, vol. 1, pp. 41–43.

    Article  Google Scholar 

  18. A. Bignonnet, J. Petit, and A. Zeghloul: in Environment Assisted Fatigue, EGF7, P. Scott, ed., Mechanical Engineering Publications, London, 1990, pp. 205–22.

    Google Scholar 

  19. A. Tonneau: Ph.D. Thesis, University of Poitiers, Poitiers, France, ENSMA, 1999.

  20. A.J. McEvily, J.L. Gonzalez, and J.M. Hallen: Scripta Mater., 1996, vol. 35, pp. 761–65.

    Article  CAS  Google Scholar 

  21. B. Bouchet and J. de Fouquet: 4th Int. Conf. on the Strength of Metals and Alloys, Nancy, France, 1976, pp. 495–89.

  22. A. Ohta and E. Sasaki: Acta Metall., 1972, vol. 20, pp. 657–60.

    Article  CAS  Google Scholar 

  23. N.M. Grinberg: Int. J. Fatigue, 1982, pp. 83–95.

  24. B. Bouchet, J. de Fouquet, and M. Aguillon: Acta Metall., 1975, vol. 23, pp. 1325–36.

    Article  CAS  Google Scholar 

  25. D. Davidson and J. Lankford: Environment-Sensitive Fracture of Engineering Materials, Fall Meeting of the Metallurgical Society of AIME, Chicago, IL, 1977, Z.A. Foroulis, ed., TMS-AIME, Warrendale, PA, pp. 581–94.

    Google Scholar 

  26. D.L. Davidson and J. Lankford: Int. J. Fract., 1981, vol. 17, pp. 257–75.

    Article  CAS  Google Scholar 

  27. D.L. Davidson and J. Lankford: Fatigue Eng. Mater. Struct., 1983, vol. 6, pp. 241–56.

    Article  CAS  Google Scholar 

  28. D. Davidson and J. Lankford: Fatigue Mechanisms: Advances in Quantitative Measurements of Physical Damage, ASTM STP 811, J. Lankford, D.L. Davidson, W.L. Morris, and R.P. Wei, eds., ASTM, Philadelphia, PA, 1983, pp. 371–99.

    Google Scholar 

  29. A.J. McEvily and J.L. Gonzalez Velazquez: Metall. Trans. A, 1992, vol. 23A, pp. 2211–21.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonneau, A., Gerland, M. & Hénaff, G. Environment-sensitive fracture of iron aluminides during cyclic crack growth. Metall Mater Trans A 32, 2345–2356 (2001). https://doi.org/10.1007/s11661-001-0208-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0208-5

Keywords

Navigation