Skip to main content
Log in

Modeling of microstructural evolution with tracking of equiaxed grain movement for multicomponent Al-Si alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new model for the simulation of microstructure evolution of multicomponent alloys with equiaxed dendritic and eutectic morphology has been developed based upon the mixture-theory model (continuum approach). The model can account for the effects of natural convection, solidification contraction, solidification kinetics, and grain movement on the solidification microstructure evolution. The novelty of this model is that it includes tracking of equiaxed dendritic and eutectic grains movement during solidification and, thus, eliminates the assumption of uniform grain size in a given volume element, which is standard in current advanced solidification models. This is achieved through the implementation of continuous nucleation laws and of a grain distribution function over the volume element, in addition to solid transport simulation through the energy equation. To track grain movement, rules of tracking grain movement are proposed. The model deals with nonequilibrium solidification and describes competitive growth of primary and eutectic phases. The proposed model was implemented to simulate the microstructural evolution of an Al-Si-Mg alloy (A356) during solidification. An equivalent pseudobinary approach was developed to calculate the solidification parameters required in modeling of this multicomponent alloy. Computational experiments with the new model have demonstrated that significant variations in the volumetric grain density exist throughout the casting because of natural convection. These differences can be traced with the proposed grain tracking technique but not with current solidification models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Stefanescu and C.S. Kanetkar: in Computer Simulation of Microstructural Evolution, D.J. Srolovitz, ed., TMS-AIME, Warrendale, PA, 1985, pp. 171–88.

    Google Scholar 

  2. M. Rappaz and P. Thevoz: Acta Metall., 1987, vol. 35, pp. 1487–97.

    Article  CAS  Google Scholar 

  3. D.G. Neilson and F.P. Incropera: Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1717–32.

    Article  CAS  Google Scholar 

  4. Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963–73.

    CAS  Google Scholar 

  5. M.C. Schneider and C. Beckermann: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 3455–73.

    Article  CAS  Google Scholar 

  6. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  7. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.

    CAS  Google Scholar 

  8. S. Chang and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2708–21.

    CAS  Google Scholar 

  9. B.J. Yang, J. Leon-Torres, and D.M. Stefanescu: Int. J. Cast Met. Res., 1999, vol. 11, pp. 527–32.

    CAS  Google Scholar 

  10. B.J. Yang and D.M. Stefanescu: in Modeling of Casting, Welding and Advanced Solidification IX, P.R. Sahm, ed., Shaker Verlag, Aachen, Germany, 2000, in press.

    Google Scholar 

  11. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–87.

    Article  CAS  Google Scholar 

  12. P.C. Carman: Trans. Inst. Chem. Eng., 1937, vol. 15, pp. 150–66.

    CAS  Google Scholar 

  13. D.M. Stefanescu, G. Upadhya, and D. Bandyopadhyay: Metall. Trans. A, 1990, vol. 21A, pp. 997–1005.

    CAS  Google Scholar 

  14. W. Oldfield: ASM Trans., 1966, vol. 59, pp. 945–60.

    CAS  Google Scholar 

  15. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37.

    Article  CAS  Google Scholar 

  16. L. Nastac and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4061–83.

    Article  CAS  Google Scholar 

  17. J.A.E. Bell and W.C. Winegard: J. Inst. Met., 1966, vol. 94, pp. 222–27.

    Google Scholar 

  18. M.G. Day: J. Inst. Met., 1970, vol. 98, pp. 57–59.

    CAS  Google Scholar 

  19. J.O. Barlow and D.M. Stefanescu: AFS Trans., 1997, vol. 105, pp. 349–54.

    CAS  Google Scholar 

  20. C. Degand, D.M. Stefanescu, and G. Laslaz: in Solidification Science and Processing, I. Ohnaka and D.M. Stefanescu, eds., TMS, Warrendale, PA, 1996, pp. 55–63.

    Google Scholar 

  21. L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys: Volume 2, Foundry Alloys, AFS/Skanaluminium, Des Plaines, IL, 1990.

    Google Scholar 

  22. W.J. Boettinger, U.R. Kattner, and D.K. Banerjee: in Modeling and Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 159–70.

    Google Scholar 

  23. D.D. Goettsch and J.A. Dantzig: Metall Mater. Trans. A, 1994, vol. 25A, pp. 1063–79.

    CAS  Google Scholar 

  24. D.B. Spalding: in Recent Advances in Numerical Methods in Fluids, C. Taylor and K. Morgan, eds., Pineridge Press, Swansea, 1981, vol. 1, pp. 139–67.

    Google Scholar 

  25. L. Nastac and D.M. Stefanescu: in Micro/Macro Scale Phenomena in Solidification, C. Beckermann, L.A. Bertram, S.J. Pien, and R.E. Smesler, eds., The American Society of Mechanical Engineers, New York, NY, HTD vol. 218, AMD vol. 139, 1992, pp. 27–34.

    Google Scholar 

  26. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980.

    Google Scholar 

  27. P. Magnin and R. Trivedi: Acta Metall. Mater., 1991, vol. 39, pp. 453–67.

    Article  CAS  Google Scholar 

  28. L.M. Hogan and H. Song: Metall. Trans. A, 1987, vol. 18A, pp. 707–13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B.J., Stefanescu, D.M. & Leon-Torres, J. Modeling of microstructural evolution with tracking of equiaxed grain movement for multicomponent Al-Si alloy. Metall Mater Trans A 32, 3065–3076 (2001). https://doi.org/10.1007/s11661-001-0181-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0181-z

Keywords

Navigation