Skip to main content
Log in

Evaluation of a threshold-based model of the elevated-temperature fatigue of impact-damaged γ-TiAl

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Step-loading fatigue tests have been conducted on two γ-TiAl alloys with differing microstructures following quasi-static indentations intended to simulate assembly-related impact damage to low-pressure turbine blades. Fatigue tests were conducted at 600 °C using computer-controlled servohydraulic loading at a frequency of 20 Hz. Reasonably good agreement was achieved between the fatigue data and calculated fatigue strength based on the fatigue threshold and measured impact severity. In certain cases, the fatigue threshold model fails to completely describe the data. These discrepancies may be related to residual stresses, variations in crack-shape morphology, and small-crack effects. Residual stresses could not be directly measured, given the small size of the damage zones. However, a comparison of fatigue threshold approximations based on a through-thickness crack geometry and a corner-crack geometry suggests that these two models may represent the upper and lower bounds of the actual fatigue behavior. In addition, the behavior of small cracks was examined by modeling the stress-lifetime response of lightly damaged specimens of the duplex alloy. This effort indicates the need for small-crack fatigue threshold values when designing fatigue-critical γ-TiAl components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.J. Perrin: Gas Turbine Engine Technology: Proc. of 4th Int. Charles Parsons Turbine Conf. 1998, Institute of Metals, London, pp. 148–158.

    Google Scholar 

  2. C.M. Austin, T.J. Kelly, K.G. McAllister, and J.C. Chesnutt: Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 413–25.

    Google Scholar 

  3. S.C. Huang and J.C. Chesnutt: Intermetallic Compounds: Vol. 2, Practice, J.H. Westbrook and R.L. Fleischer, eds., John Wiley and Sons, New York, NY, 1993, pp. 379–81.

    Google Scholar 

  4. J.P. Campbell, K.T. Venkataswara Rao, and R.O. Ritchie: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 722–28.

    Google Scholar 

  5. A.H. Rosenberger, B.D. Worth, and S.J. Balsone: Fatigue ’96 Proc. 6th Int. Fatigue Congr. Vol. III, G. Lütjering and H. Nowack, eds., Pergamon Press, Elmsford, NY, 1996, pp. 1785–90.

    Google Scholar 

  6. K. Sadananda and A.K. Vasudevan: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 490–501.

    Google Scholar 

  7. K.T. Venkataswara Rao, Y.-W. Kim, C.L. Muhlstein, and R.O. Ritchie: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 474–82.

    Google Scholar 

  8. B.A. Lerch, S.L. Draper, G.Y. Baaklini, and J.M. Pereira: HITEMP Review 1999: Advanced High Temperature Engine Materials Technology Project, NASA CP 1999-2089 15, NASA, vol. 2, pp. 30-1–30-11.

  9. O. Roders, J.O. Peters, A.W. Thompson, and R.O. Ritchie: Proc. of 4th Nat. Turbine Engine HCF Conf., Universal Technology Corp., Dayton, OH, 1999.

    Google Scholar 

  10. T. Nicholas, J.P. Barber, and R.S. Bertke: Exp. Mech., 1980, vol. 20 (10), pp. 357–64.

    Article  Google Scholar 

  11. S.J. Hudak, Jr., C.G. Chell, T.S. Rennick, R.C. McClung, and D.L. Davidson: Proc. 4th Nat. Turbine Engine HCF Conf., Universal Technology Corp., Dayton, OH, 1999, in press.

    Google Scholar 

  12. S.C. Huang: U.S. Patent 5,076,858, 1991.

  13. C. Austin: General Electric Aircraft Engines, Cincinnati, OH, unpublished research, 1995.

  14. J. LaSalle: Allison Engines, Morristown, NJ, unpublished research, 1997.

  15. K.S. Chan and Y.-W. Kim: Metall. Trans. A, 1993, vol. 24A, pp. 113–25.

    CAS  Google Scholar 

  16. J. Kumpfert, Y.-W. Kim, and D.M. Dimiduk: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 465–73.

    Google Scholar 

  17. J.A. Collins: Failure of Materials in Mechanical Design, John Wiley and Sons, New York, NY, 1993. pp. 379–81.

    Google Scholar 

  18. E.J. Dolley, N.E. Ashbaugh, and B.D. Worth: Fatigue ’96: Proc. 6th Int. Fatigue Congr. Vol. III, G. Lutjering and H. Nowack, eds., Pergamon Press, Elmsford, NY, 1996.

    Google Scholar 

  19. T.S. Harding and J.W. Jones: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1741–52.

    CAS  Google Scholar 

  20. P.S. Steif, V.T. McKenna, J.W. Jones, R. Smith, T.S. Harding, and A. Gilchrist: Proc. 3rd Int. Symp. on Structural Intermetallics, The Minerals, Metals and Materials Society, Warrendale, PA, 2001, pp. 363–70.

    Google Scholar 

  21. T.M. Pollock, D.R. Mumm, K. Muraleedharan, and P.L. Martin: Scripta Mater., 1996, vol. 35 (11), pp. 1311–16.

    Article  CAS  Google Scholar 

  22. M.P. Rubal and P.S. Steif: PRET: A University-Industry Partnership for Research and Transition of Gamma Titanium Aluminides Annual Report, Carnegie Mellon University, Pittsburgh, PA, Sept. 1997.

    Google Scholar 

  23. R. Gnanamoorthy, Y. Mutoh, K. Hayashi, and Y. Mizuhara: Scripta Metall. Mater., 1995, vol. 33, pp. 907–12.

    Article  CAS  Google Scholar 

  24. D.L. Davidson and J.B. Campbell: Metall. Trans. A, 1993, vol. 24A, pp. 1555–74.

    CAS  Google Scholar 

  25. P. Bowen, R.A. Chave, and A.W. James: Mater. Sci. Eng. A, 1995, vols. 192–93, pp. 443–56.

    Google Scholar 

  26. H. Shiota, K. Tokaji, and Y. Ohta: Mater. Sci. Eng. A, 1998, vol. 243, pp. 169–75.

    Article  Google Scholar 

  27. K.S. Chan and Y.-W. Kim: Metall. Trans. A, 1992, vol. 23, pp. 1663–77.

    Google Scholar 

  28. K.S. Chan: Metall. Trans. A, 1993, vol. 24, pp. 569–83.

    Google Scholar 

  29. T.S. Harding, J.W. Jones, P.S. Steif, and T.M. Pollock: Scripta Mater., 1999, vol. 4 (4), pp. 445–49.

    Google Scholar 

  30. Y.-W. Kim: JOM, 1994, vol. 46 (7), pp. 30–39.

    CAS  Google Scholar 

  31. S.J. Trail and P. Bowen: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 427–34.

    Google Scholar 

  32. H. Kitagawa and S. Takahashi: Proc. 2nd Int. Conf. on Mechanical Behavior of Metals, Boston, MA, 1976, pp. 627–31.

  33. T.S. Harding and J.W. Jones: Scripta Mater., 2000, vol. 43, pp. 623–29.

    Article  CAS  Google Scholar 

  34. W.F. Brown, Jr. and J.E. Srowley: Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, 1966, p. 12.

  35. B.D. Worth and J.M. Larsen: Materials Directorate, Wright Patterson Air Force Base, OH, unpublished research, 1997.

  36. K. Tanaka, Y. Nakai, and M. Yamashita: Int. J. Fract., 1981, vol. 17, pp. 519–33.

    CAS  Google Scholar 

  37. M.H. ElHaddad, N.F. Dowling, T.H. Topper, and K.N. Smith: Int. J. Fract., 1980, vol. 16, p. 15.

    Article  Google Scholar 

  38. D. Taylor: Fatigue Thresholds, Butterworth Publishing, London, 1989, pp. 132–57.

    Google Scholar 

  39. J.M. Larsen, B.D. Worth, S.J. Balsone, and A.H. Rosenberger: Proc. 8th World Conf. on Titanium, Birmingham, United Kingdom, 1995, D.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Metals, London, 1996, pp. 113–20.

    Google Scholar 

  40. J.M. Larsen, B.D. Worth, C.G. Annis, Jr., and F.K. Haake: Int. J. Fract., 1996, vol. 80, pp. 237–55.

    Article  CAS  Google Scholar 

  41. J.M. Larsen, A.H. Rosenberger, B.D. Worth, K. Li, D.C. Maxwell, and J.W. Porter: in Gamma Titanium Aluminides 1999, 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 463–72.

    Google Scholar 

  42. S.J. Balsone, J.M. Larsen, D.C. Maxwell, and J.W. Jones: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 457–64.

    Google Scholar 

  43. S. Yokoshima and M. Yamaguchi: Acta Mater., 1996, vol. 44 (3), pp. 873–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, T.S., Jones, J.W. Evaluation of a threshold-based model of the elevated-temperature fatigue of impact-damaged γ-TiAl. Metall Mater Trans A 32, 2975–2984 (2001). https://doi.org/10.1007/s11661-001-0172-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0172-0

Keywords

Navigation