Skip to main content
Log in

Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior of martensitic steels containing both Mo and W were investigated. The secondary hardening response and properties of these steels are dependent on the composition and distribution of the carbides formed during aging (tempering) of the martensite, as modified by alloying additions and austenitizing treatments. The precipitates responsible for secondary hardening are M2C carbides formed during the dissolution of the cementite (M3C). The Mo-W steel showed moderately strong secondary hardening and delayed overaging due to the combined effects of Mo and W. The addition of Cr removed secondary hardening by the stabilization of cementite, which inhibited the formation of M2C carbides. The elements Co and Ni, particularly in combination, strongly increased secondary hardening. Additions of Ni promoted the dissolution of cementite and provided carbon for the formation of M2C carbide, while Co increased the nucleation rate of M2C carbide. Fracture behavior is interpreted in terms of the presence of impurities and coarse cementite at the grain boundaries and the variation in matrix strength associated with the formation of M2C carbides. For the Mo-W-Cr-Co-Ni steel, the double-austenitizing at the relatively low temperatures of 899 to 816 °C accelerated the aging kinetics because the ratio of Cr/(Mo + W) increased in the matrix due to the presence of undissolved carbides containing considerably larger concentrations of (Mo + W). The undissolved carbides reduced the impact toughness for aging temperatures up to 510 °C, prior to the large decrease in hardness that occurred on aging at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Little and P.M. Machmeier: U.S. Patent 4,076,525, 1978.

  2. R. Ayer and P.M. Machmeier: Metall. Trans. A, 1993, vol. 24A, pp. 1943–55.

    CAS  Google Scholar 

  3. G.R. Speich, D.S. Dabkowski, and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303–15.

    CAS  Google Scholar 

  4. G.R. Speich: Innovations in Ultrahigh Strength Steel Technology, Proc. 34th Sagamore Army Materials Research Conf., G.B. Olson, M. Azrin, and E.S. Wright, eds., U.S. Army Materials Technology Laboratory, Watertown, MA, 1990, pp. 89–110.

    Google Scholar 

  5. E.C. Bain and H.W. Paxton: Alloying Elements in Steels, ASM, Cleveland, OH, 1966, pp. 197–222.

    Google Scholar 

  6. F.B. Pickering: Physical Metallurgy and The Design of Steels, Applied Science Publishers Ltd., London, 1978, pp. 133–40.

    Google Scholar 

  7. Innovations in Ultrahigh Strength Steel Technology, Proc. 34th Sagamore Army Materials Research Conf., G.B. Olson, M. Azrin, and E.S. Wright, eds., U.S. Army Materials Technology Laboratory, Watertown, MA, 1990.

  8. H. Kwon, C.M. Kim, K.B. Lee, H.R. Yang, and J.H. Lee: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 621–27.

    Google Scholar 

  9. H. Kwon, C.M. Kim, K.B. Lee, H.R. Yang, and J.H. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 397–401.

    CAS  Google Scholar 

  10. H.R. Yang, K.B. Lee, and H. Kwon: Mater. Sci. Eng. A, 1999, vol. A265, pp. 179–87.

    CAS  Google Scholar 

  11. K.B. Lee and H. Kwon: Scripta Metall. Mater., 1992, vol. 27, pp. 1355–60.

    Article  CAS  Google Scholar 

  12. H. Kwon, K.B. Lee, H.R. Yang, J.B. Lee, and Y.S. Kim: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 775–84.

    Google Scholar 

  13. W.M. Garrison, Jr. and N.R. Moody: Metall. Trans. A, 1987, vol. 18A, pp. 1257–63.

    CAS  Google Scholar 

  14. K.J. Handerhan, W.M. Garrison, Jr., and N.R. Moody: Metall. Trans. A, 1989, vol. 20A, pp. 105–23.

    CAS  Google Scholar 

  15. J.L. Maloney and W.M. Garrison, Jr.: Scripta Metall., 1989, vol. 23, pp. 2097–100.

    Article  CAS  Google Scholar 

  16. H. Kwon: Scripta Metall., 1989, vol. 23, pp. 1001–04.

    Article  CAS  Google Scholar 

  17. H. Kwon: Metall. Trans. A, 1991, vol. 22A, pp. 1119–12.

    CAS  Google Scholar 

  18. K.H. Kim and H. Kwon: Mater. Sci. Eng. A, 1990, vol. 127, pp. 51–56.

    Article  Google Scholar 

  19. K.B. Lee, C.K. Choi, K.H. Kim, and H. Kwon: Mater. Sci. Eng. A, 1991, vol. 147, pp. 175–80.

    Article  Google Scholar 

  20. K.H. Kim and H. Kwon: Scripta Metall. Mater., 1990, vol. 24, pp. 515–10.

    Article  CAS  Google Scholar 

  21. H. Kwon, C.M. Kim, K.B. Lee, H.R. Yang, and J.H. Lee: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3343–46.

    CAS  Google Scholar 

  22. R.J. Tunney and N. Ridley: Met. Sci., 1979, vol. 13, pp. 585–90.

    CAS  Google Scholar 

  23. R.A. Clark and G. Thomas: Metall. Trans. A, 1975, vol. 6A, pp. 969–79.

    CAS  Google Scholar 

  24. J.R. Holloway and A.D. Hopkins: J. Iron Steel Inst., 1971, vol. 209, pp. 813–18.

    CAS  Google Scholar 

  25. A.T. Davenport and R.W.K. Honeycomb: Met. Sci., 1975, vol. 9, pp. 201–08.

    Article  CAS  Google Scholar 

  26. J.J. Irani and R.W.K. Honeycomb: J. Iron Steel Inst., 1966, vol. 203, pp. 826–33.

    Google Scholar 

  27. D. Raynor, J.A. Whiteman, and R.W.K. Honeycomb: J. Iron Steel Inst., 1966, vol. 204, pp. 349–54.

    CAS  Google Scholar 

  28. M. Schmidt and R. Hemphil: Innovations in Ultrahigh Strength Steel Technology, Proc. 34th Sagamore Army Materials Research Conf., G.B. Olson, M. Azrin, and E.S. Wright, eds., U.S. Army Materials Technology Laboratory, Watertown, MA, 1990, pp. 239–60.

    Google Scholar 

  29. G.B. Olson: Innovations in Ultrahigh Strength Steel Technology, Proc. 34th Sagamore Army Materials Research Conf., G.B. Olson, M. Azrin, and E.S. Wright, eds., U.S. Army Materials Technology Laboratory, Watertown, MA, 1990, pp. 3–66.

    Google Scholar 

  30. V.K. Chandhok, J.P. Hirth, and E.J. Dulis: Trans. ASM, 1963, vol. 56, pp. 677–93.

    CAS  Google Scholar 

  31. C.J. McMahon, Jr., A.K. Cianelli, and H.C. Feng: Metall. Trans. A, 1977, vol. 8A, pp. 1055–57.

    CAS  Google Scholar 

  32. J.I. Ustinovshchikov: Acta Metall., 1983, vol. 31, pp. 355–64.

    Article  CAS  Google Scholar 

  33. K.B. Lee, S.M. Kang, H. Kwon, H.R. Yang, S.Y. Cho, and C.M. Kim: Proc. Symp. ’96 on Mechanical Behavior of Materials, Korean Institute of Metals and Materials, Ansan, Korea, 1996, pp. 221–30.

    Google Scholar 

  34. Y. Oh, P.M. Machmeir, T. Matuszewski, and R. Ayer: J. Mater. Eng. Performance, 1997, vol. 6, pp. 289–99.

    CAS  Google Scholar 

  35. P.M. Machmeir, T. Matuszewski, R. Jones, and R. Ayer: J. Mater. Eng. Performance, 1997, vol. 6, pp. 279–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.B., Kwon, H., Kwon, H. et al. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W. Metall Mater Trans A 32, 1659–1670 (2001). https://doi.org/10.1007/s11661-001-0144-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0144-4

Keywords

Navigation