Skip to main content
Log in

Microstructural size effects in high-strength high-conductivity Cu-Cr-Nb alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural refinement to further improve the strength and stability of high-strength high-conductivity Cu-Cr-Nb alloys was attained by mechanical milling (MM). Mechanically milled Cu-4Cr-2Nb and Cu-8Cr-2Nb exhibited an increase in hot-pressed Vickers hardness of 122 and 96 pct, respectively. Mechanical milling produced a corresponding decrease in electrical conductivity of ∼33 pct for both alloys. The increase in hardness was more due to Cu grain-size refinement than to second-phase particle-size refinement. The drop in conductivity was due to second-phase particle-size refinement, which both increased particle/matrix interfacial area and solute solubility. Mechanically processed Cu-4Cr-2Nb displayed an enhanced thermal stability. Hot-pressed 4-hour milled Cu-4Cr-2Nb experienced a 30 pct increase in conductivity with only a 22 pct drop in hardness when annealed at 1273 K for 50 hours. Such changes were largely due to an increase in dispersed-particle size (i.e., a decrease in solute and interfacial electron scattering) and Cu grain size (reduced Hall-Petch effect), respectively. The optimum hardness and conductivity combination was found in 4-hour milled and hot-pressed Cu-4Cr-2Nb material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Ellis: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 1989; also NASA CR 185144, NASA Lewis Research Center, Cleveland, OH, 1989.

    Google Scholar 

  2. D.L. Ellis, G.M. Michal, and N.W. Orth: Scripta Metall., 1990, vol. 24, pp. 885–90.

    Article  CAS  Google Scholar 

  3. K.R. Anderson, J.R. Groza, R.L. Dreshfield, and D.L. Ellis: Mater. Sci. Eng., 1993, vol. A169, pp. 167–75.

    CAS  Google Scholar 

  4. K.R. Anderson, J.R. Groza, R.L. Dreshfield, and D.L. Ellis: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2197–2206.

    CAS  Google Scholar 

  5. K.R. Anderson: Master’s Thesis, University of California at Davis, Davis, CA, 1995; also NASA CR 198492, NASA Lewis Research Center, Cleveland, OH, 1996.

    Google Scholar 

  6. K.R. Anderson: Ph.D. Dissertation, University of California at Davis, Davis, CA, 1999: also NASA CR-2000-209812, NASA John Glenn Research Center, Cleveland, OH, 2000.

    Google Scholar 

  7. B. Warren and B. Averbach: J. Appl. Phys., 1950, vol. 21, p. 595.

    Article  CAS  Google Scholar 

  8. D.L. Ellis: NASA John Glenn Research Center, Cleveland, OH, private communication, 1993.

  9. E.A. Brandes and G.R. Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, United Kingdom, 1992, vol. 28, p. 22.

    Google Scholar 

  10. D.L. Ellis, R.L. Dreshfield, M.J. Verrilli, and D.G. Ulmer: Paper presented at the Advanced Earth-to-Orbit Propulsion Technology Conf., NASA Marshall Space Flight Center, Huntsville, AL, May 17–19, 1994.

    Google Scholar 

  11. D.L. Ellis: NASA John Glenn Research Center, Cleveland, OH, unpublished research, 1996.

  12. A.L. Wingrove: J. Inst. Met., 1972, vol. 100, pp. 313–14.

    CAS  Google Scholar 

  13. G.W. Nieman, J.R. Weertman, and R.W. Siegel: J. Mater. Res., 1991, vol. 6, pp. 1012–27.

    CAS  Google Scholar 

  14. C.R. Brooks: Heat Treatment, Structure and Properties of Nonferrous Alloys, ASM, Metals Park, OH, 1990, p. 283.

    Google Scholar 

  15. J.G. Schroth and V. Franetovic: JOM, 1989, vol. 41 (1), pp. 37–39.

    CAS  Google Scholar 

  16. D.R. Maurice and T.H. Courtney: Metall. Trans. A, 1990, vol. 21A, pp. 289–303.

    CAS  Google Scholar 

  17. M.L. Öveçoglu and W.D. Nix: Int. J. Powder Metall., 1986, vol. 22, pp. 17–30.

    Google Scholar 

  18. G.A. Jerman, I.E. Anderson, and J.D. Verhoeven: Metall. Trans. A, 1993, vol. 24A, pp. 35–42.

    CAS  Google Scholar 

  19. J.D. Verhoeven, H.L. Downing, L.S. Chumbley, and E.D. Gibson: J. Appl. Phys., 1989, vol. 65, pp. 1293–1301.

    Article  CAS  Google Scholar 

  20. W.A. Spitzig, A.R. Pelton, and F.C. Laabs: Acta Metall., 1987, vol. 35, pp. 2427–44.

    Article  CAS  Google Scholar 

  21. C.L. Trybus and W.A. Spitzig: Acta Metall., 1989, vol. 37, pp. 1971–81.

    Article  CAS  Google Scholar 

  22. J.D. Verhoeven, S.C. Chueh, and E.D. Gibson: J. Mater. Sci., 1989, vol. 24, pp. 1748–52.

    Article  CAS  Google Scholar 

  23. J.D. Verhoeven, W.A. Spitzig, L.L. Jones, H.L. Downing, C.L. Trybus, E.D. Gibson, L.S. Chumbley, L.G. Fritzemeier, and G.D. Schnittgrund: J. Mater. Eng., 1990, vol. 12, pp. 127–39.

    CAS  Google Scholar 

  24. J.Y. Huang, Y.K. Wu, and H.Q. Ye: Mater. Sci. Eng., 1995, vol. A199, pp. 165–72.

    Google Scholar 

  25. P. Le Brun, E. Gaffet, L. Froyen, and L. Delaey: Scripta Metall., 1992, vol. 26, pp. 1743–48.

    Article  Google Scholar 

  26. J. Naser, W. Riehemann, and H. Ferkel: Mater. Sci. Eng., 1997, vols. A234-A236, pp. 467–69.

    Google Scholar 

  27. R.Z. Valiev: Mater. Sci. Eng., 1997, vols. A234-A236, pp. 59–66.

    Google Scholar 

  28. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scripta Metall., 1989, vol. 23, pp. 1679–83.

    Article  CAS  Google Scholar 

  29. J. Lian, R.Z. Valiev, and B. Boudelet: Acta Mater., 1995, vol. 43, pp. 4165–70.

    Article  CAS  Google Scholar 

  30. R.R. Vance and T.H. Courtney: Scripta Metall., 1992, vol. 26, pp. 1435–40.

    Article  CAS  Google Scholar 

  31. M.A. Morris and D.G. Morris: Mater. Sci. Eng., 1988, vol. A104, pp. 201–13.

    CAS  Google Scholar 

  32. M.A. Morris and D.G. Morris: Mater. Sci. Eng., 1989, vol. A111, pp. 115–27.

    CAS  Google Scholar 

  33. D.G. Morris and M.A. Morris: Scripta Metall. Mater., 1990, vol. 24, pp. 1701–06.

    Article  CAS  Google Scholar 

  34. D.G. Morris and M.A. Morris: Acta Metall., 1991, vol. 39, pp. 1763–70.

    Article  CAS  Google Scholar 

  35. D.G. Morris and M.A. Morris: Mater. Sci. Eng., 1991, vol. A134, pp. 1418–21.

    CAS  Google Scholar 

  36. P.M. Hazzledine: Scripta Metall. Mater., 1992, vol. 26, pp. 57–58.

    Article  CAS  Google Scholar 

  37. U.F. Kocks: Phil. Mag., 1966, vol. 13, pp. 541–66.

    Google Scholar 

  38. M.F. Ashby: in Strengthening Methods in Crystals, A. Kelley and R.B. Nicholson, eds., Elsevier, New York, NY, 1971, p. 165.

    Google Scholar 

  39. E.O. Hall: Proc. Phys. Soc., London, 1951, vol. B64, pp. 747–53.

    CAS  Google Scholar 

  40. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  41. N. Hansen: Metall. Trans. A, 1985, vol. 16A, pp. 2167–90.

    CAS  Google Scholar 

  42. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  43. T. Gladman: Proc. R. Soc., 1966, vol. A294, pp. 298–309.

    Google Scholar 

  44. C.S. Smith (communication with C. Zener): Trans. Am. Inst. Min. Eng., 1948, vol. 175, pp. 47–56.

    Google Scholar 

  45. S.E. Broyles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1217–27.

    CAS  Google Scholar 

  46. J. Robles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2235–45.

    CAS  Google Scholar 

  47. J.J. Stephens and C.R. Hills: “Long Term Stability of Two Dispersion Strengthened Copper Alloys at Elevated Temperatures,” Sandia National Laboratories, Albuquerque, NM, 1990; paper presented at the 119th Annual Meeting of TMS, Anaheim, CA, Feb. 18–22, 1990.

    Google Scholar 

  48. J.S. Benjamin and R.D. Schelleng: Metall. Trans. A, 1981, vol. 12A, pp. 1827–32.

    Google Scholar 

  49. A. Boltax: Trans. TMS-AIME, 1960, vol. 218, pp. 812–21.

    Google Scholar 

  50. W.A. Spitzig, L.S. Chumbley, J.D. Verhoeven, Y.S. Go, and H.L. Downing: J. Mater. Sci., 1992, vol. 27, pp. 2005–11.

    Article  CAS  Google Scholar 

  51. J. Miyake and M.E. Fine: Acta Metall., 1992, vol. 40, pp. 733–41.

    Article  CAS  Google Scholar 

  52. A. Manzano-Ramirez, E. Nava-Vazquez, and J. Gonzalez-Hernandez: Metall. Trans. A, 1993, 24A, pp. 2355–58.

    CAS  Google Scholar 

  53. N. Fuschillo and M.L. Gimpl: J. Appl. Phys., 1971, vol. 42, pp. 5513–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, K.R., Groza, J.R. Microstructural size effects in high-strength high-conductivity Cu-Cr-Nb alloys. Metall Mater Trans A 32, 1211–1224 (2001). https://doi.org/10.1007/s11661-001-0130-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0130-x

Keywords

Navigation