Skip to main content
Log in

Tensile ductility of several commercial aluminum alloys at elevated temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

One experimental and five commercial aluminum alloys were tested in tension at elevated temperatures (225 °C to 500 °C) over a range of strain rates (2×10−5 to 10−1 s−1). The experimental alloy contained 5 wt pct Zn with a balance of Al. The commercial alloys included AA 5182, 5754, 7150, 6111, and 6022. Two 5182 materials were examined, one produced by standard ingot-processing methods and the other by continuous casting. The 5754 and 5182 alloys exhibited a deformation regime consistent with solute-drag creep for values of diffusivity-compensated strain rate less than 1013 m−2. Within this regime, the 5754 and ingot-metallurgy 5182 materials exhibited tensile ductilities up to 140 pct. The continuously cast 5182 material exhibited lower ductility in this regime than the 5754 and ingot-metallurgy 5182 materials, despite similar stress exponents. Ductility was reduced in the continuously cast 5182 because of significant dynamic grain growth and cavitation. The 7150, Al-5Zn, 6111, and 6022 materials exhibited significantly higher stress exponents and lower tensile ductilities than the 5000-series materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, and J. Wadsworth: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1081–91.

    CAS  Google Scholar 

  2. E.M. Taleff, P.J. Nevland, and S.J. Yoon: in Deformation, Processing, and Properties of Structural Materials, E.M. Taleff, C.K. Syn, and D.R. Lesuer, eds., TMS, Warrendale, PA, 2000, pp. 373–84.

    Google Scholar 

  3. E.M. Taleff and P.J. Nevland: JOM, 1999, vol. 51, pp. 34–36.

    CAS  Google Scholar 

  4. P.A. Friedman and A.K. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3827–39.

    Article  CAS  Google Scholar 

  5. O.D. Sherby and J. Wadsworth: Progr. Mater. Sci., 1989, vol. 33, pp. 169–221.

    Article  CAS  Google Scholar 

  6. C.A. Lavender, J.S. Vetrano, M.T. Smith, S.M. Bruemmer, and C.H. Hamilton: Mater. Sci. Forum, 1994, vols. 170–172, pp. 279–86.

    Article  Google Scholar 

  7. J.S. Vetrano, C.A. Lavender, C.H. Hamilton, M.T. Smith and S.M. Bruemmer: Scripta Metall. Mater., 1994, vol. 30, pp. 565–70.

    Article  CAS  Google Scholar 

  8. R. Verma, A.K. Ghosh, S. Kim, and C. Kim: Mater. Sci. Eng., 1995, vol. A191, pp. 143–50.

    CAS  Google Scholar 

  9. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, and C. Kim: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1889–98.

    CAS  Google Scholar 

  10. M.A. Khaleel, M.T. Smith, and S.G. Pitman: Scripta Mater., 1997, vol. 37, pp. 1909–15.

    Article  CAS  Google Scholar 

  11. K. Kannan, C.H. Johnson, and C.H. Hamilton: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1211–20.

    CAS  Google Scholar 

  12. E.M. Taleff, D.R. Lesuer, and J. Wadsworth: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 343–52.

    CAS  Google Scholar 

  13. E.M. Taleff, P.J. Nevland, and P.E. Krajewski: in Creep Behavior of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., TMS, Warrendale, PA, 1999, No. 3A, pp. 349–58.

    Google Scholar 

  14. S. Mrowec: Defects and Diffusion in Solids, An Introduction, Elsevier/North-Holland, Inc., New York, NY, 1980, p. 397.

    Google Scholar 

  15. Y. Funamizu and K. Watanabe: Trans. JIM, 1972, vol. 13, pp. 278–83.

    CAS  Google Scholar 

  16. J. Weertman: J. Appl. Phys., 1957, vol. 28, pp. 1185–89.

    Article  Google Scholar 

  17. J. Weertman: Trans. TMS-AIME, 1960, vol. 218, pp. 207–18.

    CAS  Google Scholar 

  18. E.W. Hart: Acta Metall., 1967, vol. 15, pp. 351–55.

    Article  CAS  Google Scholar 

  19. M.A. Burke and W.D. Nix: Acta Metall., 1975, vol. 23, pp. 793–98.

    Article  CAS  Google Scholar 

  20. J.W. Hutchinson and H. Obrecht: Fracture, 1977, vol. 1, pp. 101–16.

    Google Scholar 

  21. A.K. Ghosh: Acta Metall., 1977, vol. 25, pp. 1413–24.

    Article  Google Scholar 

  22. O.D. Sherby, R.A. Anderson, and J.E. Dorn: Trans. AIME, 1951, vol. 191, p. 643.

    Google Scholar 

  23. ASM Specialty Handbook: Aluminum and Aluminum Alloys, J.R. Davis, eds., ASM International, Materials Park, OH, 1996, pp. 19–24.

    Google Scholar 

  24. E.E. Underwood: Metals Handbook: Metallography Structures and Phase Diagrams, 8th ed., ASM, Metals Park, OH, 1973, vol. 8, pp. 37–47.

    Google Scholar 

  25. W. Köster: Z. Metallk., 1948, vol. 39, pp. 9–12.

    Google Scholar 

  26. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, New York, NY, 1982, p. 21.

    Google Scholar 

  27. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1968, vol. 13, pp. 325–90.

    Article  Google Scholar 

  28. H. Oikawa, N. Matsuno, and S. Karashima: Met. Sci., 1975, vol. 9, pp. 209–12.

    Article  CAS  Google Scholar 

  29. R. Horiuchi and M. Otsuka: Trans. JIM, 1972, vol. 13, pp. 284–93.

    Google Scholar 

  30. P. Yavari and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 2181–96.

    Article  CAS  Google Scholar 

  31. T.R. McNelley, D.J. Michel, and A. Salama: Scripta Metall., 1989, vol. 23, pp. 1657–62.

    Article  CAS  Google Scholar 

  32. I.S. Servi and N.J. Grant: Trans. AIME, 1951, vol. 191, pp. 917–22.

    Google Scholar 

  33. M.E. Kassner and M.-T. Pérez-Prado: Progr. Mater. Sci., 2000, vol. 45, pp. 1–102.

    Article  CAS  Google Scholar 

  34. M.S. Mostafa and F.A. Mohamed: Metall. Trans. A, 1986, vol. 17A, pp. 365–66.

    CAS  Google Scholar 

  35. H.W. King: J. Mater. Sci., 1966, vol. 1, pp. 79–90.

    Article  CAS  Google Scholar 

  36. O.D. Sherby, R.H. Klundt, and A.K. Miller: Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    CAS  Google Scholar 

  37. J. Lin and O.D. Sherby: Res. Mechanica, 1981, vol. 2, pp. 251–93.

    CAS  Google Scholar 

  38. Binary Alloy Phase Diagrams, T.B. Massalski, ed., 2nd ed. ASM International, Materials Park, OH, 1990, vol. 1, pp. 211–13.

    Google Scholar 

  39. J.L. Murray and A.J. McAlister: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 74–83.

    CAS  Google Scholar 

  40. R.A. Ayres: Metall. Trans. A, 1979, vol. 10A, pp. 849–54.

    CAS  Google Scholar 

  41. A.A. Tavassoli, S.E. Razavi, and N.M. Fallah: Metall. Trans. A, 1975, vol. 6A, pp. 591–94.

    CAS  Google Scholar 

  42. E.M. Taleff, T. Leon-Salamanca, R.A. Ketcham, R. Reyes, and W.D. Carlson: J. Mater. Res., 2000, vol. 15, pp. 76–84.

    CAS  Google Scholar 

  43. R.A. Ayres and M.L. Wenner: Metall. Trans. A, 1979, vol. 10A, pp. 41–46.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taleff, E.M., Nevland, P.J. & Krajewski, P.E. Tensile ductility of several commercial aluminum alloys at elevated temperatures. Metall Mater Trans A 32, 1119–1130 (2001). https://doi.org/10.1007/s11661-001-0123-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0123-9

Keywords

Navigation