Skip to main content

Advertisement

Log in

Creep-rupture behavior of a directionally solidified nickel-base superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The creep-rupture behavior of the directionally solidified (DS) nickel-base superalloy DZ17G has been investigated over a wide stress range of 60 to 950 MPa at high temperature (923 to 1323 K). In this article, the detailed creep deformation and fracture mechanisms at constant load have been studied. The results show that all creep curves exhibit a short primary and a dominant accelerated creep stage, which results in higher ductility of DS superalloy DZ17G compared to the conventionally cast alloy. From the creep parameters and transmission electron microscopy (TEM) observations, it is suggested that the dominant creep deformation mechanism has a change from gamma prime particles shearing by matrix dislocations in high stress region to dislocation climb process in low stress region. It is found that the fracture mode of DS superalloy DZ17G is transgranular, and it is controlled by the propagation rate of creep cracks initiated at both surface and inner microstructure discontinuities. The creep rupture data follows the Monkman-Grant relationship under all the explored test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.L. VerSynder and R.W. Guard: Trans. ASM, 1960, vol. 32, pp. 485–93.

    Google Scholar 

  2. F.L. VerSynder and M.E. Shank: Mater. Sci. Eng., 1970, vol. 6, pp. 213–47.

    Article  Google Scholar 

  3. M. McLean: Directionally Solidified Materials for High Temperature Service, TMS, London, 1983, p. 180.

    Google Scholar 

  4. D.N. Duhl: in Superalloys II, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Wiley and Sons, New York, NY, 1987, p. 189.

    Google Scholar 

  5. F.R.N. Nabarro and H.L. de Villiers: The Physics of Creep, Taylor and Francis, London, 1995, p. 83.

    Google Scholar 

  6. G.R. Leverant, B.H. Kear, and J.M. Oblak: Metall. Trans. A, 1973, vol. 4, pp. 355–62.

    CAS  Google Scholar 

  7. R.A. Mackay and R.D. Maier: Metall. Trans. A, 1982, vol. 13A, pp. 1747–54.

    Google Scholar 

  8. M.V. Nathal and L.J. Ebert: Metall. Trans. A, 1985, vol. 16A, pp. 27–39.

    Google Scholar 

  9. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  CAS  Google Scholar 

  10. H. Rouault-Rogez, M. Dupeux, and M. Ignat: Acta Metall. Mater., 1994, vol. 42, pp. 3137–48.

    Article  CAS  Google Scholar 

  11. G. Eggeler and A. Dlouhy: Acta Mater., 1997, vol. 45, pp. 4251–62.

    Article  CAS  Google Scholar 

  12. D. Sieborger and U. Glatzel: Acta Mater., 1999, vol. 47, pp. 397–406.

    Article  CAS  Google Scholar 

  13. R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81.

    Article  CAS  Google Scholar 

  14. N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 1549–63.

    Article  CAS  Google Scholar 

  15. K. Kakehi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 421–30.

    CAS  Google Scholar 

  16. E.W. Ross and K.S. O’Hara: in Superalloy 1992, S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, p. 257.

    Google Scholar 

  17. A.D. Cetel and D.N. Duhl: in Superalloy 1992, R.D. Kissinger et al., eds., TMS, Warrendale, PA, 1992, p. 287.

    Google Scholar 

  18. K. Harris, G.L. Erickson, and R.E. Schwer: in Superalloy 1992, R.D. Kissinger et al., eds., TMS, Warrendale, PA, 1992, p. 297.

    Google Scholar 

  19. A. Nomoto, M. Yaguehi, and T. Ogata: Key Eng. Mater., 2000, vols. 171–174 pp. 569–76.

    Article  Google Scholar 

  20. J.P. Dennison, P.D. Holmes, and B. Wilshire: Mater. Sci. Eng., 1978, vol. 33, pp. 35–48.

    Article  CAS  Google Scholar 

  21. B. Burton, I.G. Grossland, and G.W. Greenwood: Met. Sci., 1980, vol. 14, pp. 134–36.

    CAS  Google Scholar 

  22. J.C. Gibeling and W.D. Nix: Mater. Sci. Eng., 1980, vol. 45, pp. 123–35.

    Article  Google Scholar 

  23. C. Yuan, J.T. Guo, H.C. Yang, and S.H. Wang: Scripta Mater., 1998, vol. 39, pp. 991–97.

    Article  CAS  Google Scholar 

  24. K.R. Williams and B. Wilshire: Mater. Sci. Eng., 1977, vol. 28, pp. 289–96.

    Article  CAS  Google Scholar 

  25. Guo Jianting, D. Ranucci, E. Picco, and P.M. Strocchi: Metall. Trans. A, 1983, vol. 14A, pp. 2329–35.

    Google Scholar 

  26. R.B. Scarlin: Metall. Trans. A, 1976, vol. 7A, pp. 1535–41.

    CAS  Google Scholar 

  27. R.S. Mishra, S.P. Singh, A.M. Sirramaurthy, and M.C. Pandey: Mater. Sci. Technol., 1995, vol. 11, pp. 341–45.

    CAS  Google Scholar 

  28. F.C. Monkman and N.J. Grant: Proc. ASTM, 1956, vol. 56, pp. 593–620.

    Google Scholar 

  29. V. Lupinc: in Creep and Fatigue in High Temperature Alloys, J. Bressers, ed., Applied Science Pub. Ltd., London, 1981, p. 7.

    Google Scholar 

  30. G.L. Erickson, K. Harris, and R.E. Schwer: TMS-AIME Meeting, Houston, TX, Mar. 1985.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J.T., Yuan, C., Yang, H.C. et al. Creep-rupture behavior of a directionally solidified nickel-base superalloy. Metall Mater Trans A 32, 1103–1110 (2001). https://doi.org/10.1007/s11661-001-0121-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0121-y

Keywords

Navigation