Skip to main content
Log in

Mechanism of detrimental effects of carbon content on cleavage fracture toughness of low-alloy steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The variation in fracture toughness of low-alloy base steels and weld steels with carbon contents of 0.08 and 0.21 wt pct was investigated using notched and precracked specimens tested at low temperatures. The attention is focused on the mechanism associated with detrimental effects on cleavage fracture toughness resulting from increasing carbon content. Analyses reveal that, in the case of constant ferrite grain sizes with increasing carbon content, the yield stress σ y increases and the local fracture stress σ f remains constant for notched specimens. For precracked specimens, the σ y increases, whereas the σ f decreases. In both cases, the ratio σ f /σ y decreases; this ratio is one of the principal factors inducing the deterioration in the cleavage fracture toughness of the higher carbon steels. Analyses also reveal that the critical strain for initiating a crack nucleus, which decreases with increasing carbon content and impurity elements, appears to be another principal factor that has a negative effect on the fracture toughness in both notched and precracked specimens. The results of the fracture toughness measured for weld metal with various grain sizes further support the predominant effect of grain size on the toughness of notched specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. McMahon Jr. and Morris Cohen: Acta Metall., 1965, vol. 13, pp. 591–604.

    Article  CAS  Google Scholar 

  2. E. Smith: Proc. Conf. on Physical Basis of Yield and Fracture, Institute of Physics and the Physical Society, London, 1966, pp. 36–46.

    Google Scholar 

  3. D.E. Hodgson and A.S. Tetelman: Proc. 2nd Int. Conf. on Fracture, Brighton, 1969, pp. 266–77.

  4. D.A. Curry and J.F. Knott: Met. Sci., 1978, vol. 11, pp. 511–14.

    Google Scholar 

  5. J.H. Chen, L. Zhu, G.Z. Wang, and Z. Wang: Metall. Trans. A, 1993, vol. 24A, pp. 659–67.

    CAS  Google Scholar 

  6. P. Brozzo, G. Buzzichelli, A. Mascanzoni, and M. Mirrabile: Met. Sci., 1977, Apr., pp. 123–29.

  7. G.Z. Wang and J.H. Chen: Int. J. Fract., 1998, vol. 89, pp. 269–84.

    Article  CAS  Google Scholar 

  8. A.W. Thompson and J.F. Knott: Metall. Trans. A, 1993, vol. 24A, pp. 523–34.

    CAS  Google Scholar 

  9. J.R. Griffiths and D.R.J. Owen: J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–29.

    Article  Google Scholar 

  10. C. Yan, J.H. Chen, J. Sun, and Z. Wang: Metall. Trans. A, 1993, vol. 24A, pp. 1381–89.

    CAS  Google Scholar 

  11. J.H. Chen, C. Yan, and J. Sun: Acta Metall. Mater., 1994, vol. 42, pp. 251–61.

    Article  CAS  Google Scholar 

  12. J.H. Chen and G.Z. Wang: Metall. Trans. A, 1992, vol. 23A, pp. 509–17.

    CAS  Google Scholar 

  13. J.H. Chen, L. Zhu, and H. Ma: Acta Metall. Mater., 1990, vol. 38, pp. 2527–35.

    Article  CAS  Google Scholar 

  14. J.H. Chen, G.Z. Wang, and H. Ma: Metall. Trans. A, 1990, vol. 21A, pp. 321–30.

    CAS  Google Scholar 

  15. T. Miyata, R.C. Yang, A. Otsuka, T. Haze, and S. Aihara: in Advances in Fracture Research, Proc. ICF6, Houston, TX, 1989, K. Salama, K. Ravi-Chandar, D.M.R. Taplin, and P. Rama Rao, eds.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.H., Wang, G.Z. & Hu, S.H. Mechanism of detrimental effects of carbon content on cleavage fracture toughness of low-alloy steel. Metall Mater Trans A 32, 1081–1091 (2001). https://doi.org/10.1007/s11661-001-0119-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0119-5

Keywords

Navigation