Abstract
The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ∼78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ∼75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ∼1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.
Similar content being viewed by others
References
A. Howie: in Direct Observations of Imperfections in Crystals, J.B. Newark and J.H. Wernick, eds., Interscience Publishers, New York, NY, 1961, pp. 283–94.
P.R. Swann: in The Impact of Transmission Electron Microscopy on Theories of the Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience Publishers, New York, NY, 1961, pp. 131–79.
O. Johari and G. Thomas: Acta Metall., 1964, vol. 12, pp. 1153–59.
W.B. Jones and H.I. Dawson: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes, eds., Plenum Press, New York, NY, 1973, pp. 443–59.
F.I. Grace and M.C. Inman: Metallography, 1970, vol. 3, pp. 89–98.
J.A. Venables: in Deformation Twinning, R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers, eds., Gordon and Breach Science Publishers, London, 1963, vol. 25, pp. 77–116.
C.S. Pande and P.M. Hazzledine: Phil. Mag., 1971, vol. 24, pp. 1393–1410.
C.S. Pande and P.M. Hazzledine: Phil. Mag., 1971, vol. 24, pp. 1039–57.
F.I. Grace, M.C. Inman, and L.E. Murr: Br. J. Appl. Phys., 1968, vol. 1, pp. 1437–43.
Z.S. Basinski, R.A. Foxall, and R. Pascual: Scripta Metall., 1972, vol. 6, pp. 807–14.
J. Vergnol and J.P. Villain: 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Elmsford, NY, 1979, vol. 1, pp. 121–26.
H. Suzuki and E. Kuramoto: Int. Conf. on the Strength of Metals and Alloys; suppl. to Trans. Jpn. Inst. Met., 1967, pp. 697–702.
G.I. Shakhalova and A.I. Evplov: Strength Mater., 1992, vol. 24, pp. 469–71.
P.S. Follansbee: in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker Inc., New York, NY, 1986, pp. 451–79.
M.Z. Butt: Phil. Mag. Lett., 1989, vol. 60, pp. 141–45.
V.Y. Panin, Y.F. Dudarev, and L.S. Bushnev: Phys. Met. Metallogr., 1966, vol. 21, pp. 73–80.
K. Nakanishi and H. Suzuki: Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 435–40.
J.W. Steeds and P.M. Hazzledine: Disc. Faraday Soc., 1964, vol. 38, pp. 103–10.
W.E. Nixon and J.W. Mitchell: Proc. R. Soc. London A, 1981, vol. 376, pp. 343–59.
L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Co., New York, NY, 1975, pp. 87–164.
D.T. Hawkins and R. Hultgren: in Metals Handbook—Metallography, Structures and Phase Diagrams, T. Lyman, ed., ASM, Metals Park, OH, 1973, vol. 8, p. 259.
G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Company, New York, NY, 1986, p. 135.
J. Friedel: in Dislocations and Mechanical Properties of Crystals, J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland, Jr., eds., John Wiley and Sons, Inc., Chapman and Hall, Ltd., New York, 1957, pp. 330–32.
J.P. Hirth and J. Lothe: Theory of Dislocations, McGraw-Hill, New York, NY, 1968, pp. 733–36.
G.T. Gray III: Symp. Modeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollett, P.S. Follansbee, and G.S. Daehn, eds., TMS, Warrendale, PA, 1991, pp. 145–58.
F.I. Grace: J. Appl. Phys., 1969, vol. 40, pp. 2649–53.
L.E. Murr: in Shock Waves and High Strain Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1980, pp. 607–73.
M.A. Crimp, B.C. Smith, and D.E. Mikkola: Mater. Sci. Eng., 1987, vol. 96, pp. 27–40.
G.T. Gray III, P.S. Follansbee, and C.E. Frantz: Mater. Sci. Eng., 1989, vol. A111, pp. 9–16.
L. Remy: Acta Metall., 1978, vol. 26, pp. 443–51.
S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–95.
O. Vöhringer: Z. Metallk., 1976, vol. 67, pp. 518–24.
S. Mahajan: Phil. Mag., 1972, vol. 26, pp. 161–71.
T. Mori, H. Fujita, and S. Takemori: Phil. Mag. A, 1981, vol. 44, pp. 1277–86.
L. Rémy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.
D.R. Chichili, K.T. Ramesh, and K.J. Hemker: The Johannes Weertman Symp., R.J. Arsenault, D. Cole, T. Gross, G. Kostorz, P.K. Liaw, S. Parameswaran, and H. Sizek, eds., TMS, Warrendale, PA, 1996, pp. 437–48.
L.E. Murr, M.A. Meyers, C.-S. Niou, Y.J. Chen, S. Pappu, and C. Kennedy: Acta Mater., 1997, vol. 45, pp. 157–75.
F.J. Zerilli and R.W. Armstrong: in Shock Waves in Condensed Matter, S.C. Schmidt and N.C. Holmes, eds., North-Holland, Amsterdam, 1987, pp. 273–76.
G.T. Gray III: Symp. Twinning in Advanced Materials, M.H. Yoo and M. Wuttig, eds., TMS, Warrendale, PA, 1994, pp. 337–49.
U.R. de Andrade: Ph.D. Thesis, University of California, San Diego, CA, 1993.
S. Nemat-Nasser, J.B. Issacs, and J.E. Starrett: Proc. R. Soc. London A, 1991, vol. 435, pp. 371–91.
Annual Book of ASTM Standards, ASTM E112-88, ASTM, Philadelphia, PA, 1988, pp. 294–316.
W.J. Babyak and F.N. Rhines: Trans. TMS-AIME, 1960, vol. 218, pp. 21–23.
T. Kan and P. Haasen: Mater. Sci. Eng., 1969–70, vol. 5, pp. 176–78.
R. Labusch: Phys. Status Solidi, 1970, vol. 41, pp. 659–69.
P. Jax, P. Kratochvil, and P. Haasen: Acta Metall., 1970, vol. 18, pp. 237–45.
R. Labusch, G. Grange, J. Ahearn, and P. Haasen: in Rate Processes in Plastic Deformation of Materials, J.C.M. Li and A.K. Mukherjee, eds., ASM, Cleveland, OH, 1975, pp. 26–46.
B.C. Wonsiewicz and G.Y. Chin: Metall. Trans., 1970, vol. 1, pp. 2715–22.
N. Ono and S. Karashima: Scripta Metall., 1982, vol. 16, pp. 381–84.
D.J. Parry and A.G. Walker: in Mechanical Properties of Materials at High Rates of Strain, J. Harding, eds., Institute of Physics, Bristol, 1989, pp. 329–36.
R.J. De Angelis and J.B. Cohen: Trans. ASM, 1965, vol. 58, pp. 700–02.
M.G. Stout and U.F. Kocks: in Texture and Anisotropy, U.F. Kocks, C.N. Tomé, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 420–65.
U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.
H. Mecking and Y. Estrin: in Constitutive Relations and Their Physical Basis, S.I. Andersen, J.B. Bilde-Sørensen, N. Hansen, T. Leffers, H. Lilholt, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1987, pp. 123–45.
P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.
H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.
Y. Estrin and H. Mecking: Int. J. Plasticity, 1986, vol. 2, pp. 73–85.
Metals Handbook, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 216–345.
U.F. Kocks: in The Mechanics of Dislocations, ASM, Metals Park, OH, 1985, pp. 81–83.
U.F. Kocks: in Unified Constitutive Equations for Creep and Plasticity, A.K. Miller, ed., Elsevier, London, 1987, pp. 18–80.
D.H. Lassila: in Mechanical Properties of Materials at High Rates of Strain, J. Harding, ed., Institute of Physics, Bristol, 1989, pp. 323–27.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rohatgi, A., Vecchio, K.S. & Gray, G.T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall Mater Trans A 32, 135–145 (2001). https://doi.org/10.1007/s11661-001-0109-7
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11661-001-0109-7