Skip to main content
Log in

The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ∼78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ∼75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ∼1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Howie: in Direct Observations of Imperfections in Crystals, J.B. Newark and J.H. Wernick, eds., Interscience Publishers, New York, NY, 1961, pp. 283–94.

    Google Scholar 

  2. P.R. Swann: in The Impact of Transmission Electron Microscopy on Theories of the Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience Publishers, New York, NY, 1961, pp. 131–79.

    Google Scholar 

  3. O. Johari and G. Thomas: Acta Metall., 1964, vol. 12, pp. 1153–59.

    Article  CAS  Google Scholar 

  4. W.B. Jones and H.I. Dawson: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes, eds., Plenum Press, New York, NY, 1973, pp. 443–59.

    Google Scholar 

  5. F.I. Grace and M.C. Inman: Metallography, 1970, vol. 3, pp. 89–98.

    Article  CAS  Google Scholar 

  6. J.A. Venables: in Deformation Twinning, R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers, eds., Gordon and Breach Science Publishers, London, 1963, vol. 25, pp. 77–116.

    Google Scholar 

  7. C.S. Pande and P.M. Hazzledine: Phil. Mag., 1971, vol. 24, pp. 1393–1410.

    CAS  Google Scholar 

  8. C.S. Pande and P.M. Hazzledine: Phil. Mag., 1971, vol. 24, pp. 1039–57.

    CAS  Google Scholar 

  9. F.I. Grace, M.C. Inman, and L.E. Murr: Br. J. Appl. Phys., 1968, vol. 1, pp. 1437–43.

    Google Scholar 

  10. Z.S. Basinski, R.A. Foxall, and R. Pascual: Scripta Metall., 1972, vol. 6, pp. 807–14.

    Article  CAS  Google Scholar 

  11. J. Vergnol and J.P. Villain: 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Elmsford, NY, 1979, vol. 1, pp. 121–26.

    Google Scholar 

  12. H. Suzuki and E. Kuramoto: Int. Conf. on the Strength of Metals and Alloys; suppl. to Trans. Jpn. Inst. Met., 1967, pp. 697–702.

  13. G.I. Shakhalova and A.I. Evplov: Strength Mater., 1992, vol. 24, pp. 469–71.

    Article  Google Scholar 

  14. P.S. Follansbee: in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker Inc., New York, NY, 1986, pp. 451–79.

    Google Scholar 

  15. M.Z. Butt: Phil. Mag. Lett., 1989, vol. 60, pp. 141–45.

    CAS  Google Scholar 

  16. V.Y. Panin, Y.F. Dudarev, and L.S. Bushnev: Phys. Met. Metallogr., 1966, vol. 21, pp. 73–80.

    Google Scholar 

  17. K. Nakanishi and H. Suzuki: Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 435–40.

    CAS  Google Scholar 

  18. J.W. Steeds and P.M. Hazzledine: Disc. Faraday Soc., 1964, vol. 38, pp. 103–10.

    Article  Google Scholar 

  19. W.E. Nixon and J.W. Mitchell: Proc. R. Soc. London A, 1981, vol. 376, pp. 343–59.

    CAS  Google Scholar 

  20. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Co., New York, NY, 1975, pp. 87–164.

    Google Scholar 

  21. D.T. Hawkins and R. Hultgren: in Metals Handbook—Metallography, Structures and Phase Diagrams, T. Lyman, ed., ASM, Metals Park, OH, 1973, vol. 8, p. 259.

    Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Company, New York, NY, 1986, p. 135.

    Google Scholar 

  23. J. Friedel: in Dislocations and Mechanical Properties of Crystals, J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland, Jr., eds., John Wiley and Sons, Inc., Chapman and Hall, Ltd., New York, 1957, pp. 330–32.

    Google Scholar 

  24. J.P. Hirth and J. Lothe: Theory of Dislocations, McGraw-Hill, New York, NY, 1968, pp. 733–36.

    Google Scholar 

  25. G.T. Gray III: Symp. Modeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollett, P.S. Follansbee, and G.S. Daehn, eds., TMS, Warrendale, PA, 1991, pp. 145–58.

    Google Scholar 

  26. F.I. Grace: J. Appl. Phys., 1969, vol. 40, pp. 2649–53.

    Article  CAS  Google Scholar 

  27. L.E. Murr: in Shock Waves and High Strain Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1980, pp. 607–73.

    Google Scholar 

  28. M.A. Crimp, B.C. Smith, and D.E. Mikkola: Mater. Sci. Eng., 1987, vol. 96, pp. 27–40.

    Article  CAS  Google Scholar 

  29. G.T. Gray III, P.S. Follansbee, and C.E. Frantz: Mater. Sci. Eng., 1989, vol. A111, pp. 9–16.

    CAS  Google Scholar 

  30. L. Remy: Acta Metall., 1978, vol. 26, pp. 443–51.

    Article  CAS  Google Scholar 

  31. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–95.

    Article  CAS  Google Scholar 

  32. O. Vöhringer: Z. Metallk., 1976, vol. 67, pp. 518–24.

    Google Scholar 

  33. S. Mahajan: Phil. Mag., 1972, vol. 26, pp. 161–71.

    CAS  Google Scholar 

  34. T. Mori, H. Fujita, and S. Takemori: Phil. Mag. A, 1981, vol. 44, pp. 1277–86.

    CAS  Google Scholar 

  35. L. Rémy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.

    Google Scholar 

  36. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: The Johannes Weertman Symp., R.J. Arsenault, D. Cole, T. Gross, G. Kostorz, P.K. Liaw, S. Parameswaran, and H. Sizek, eds., TMS, Warrendale, PA, 1996, pp. 437–48.

    Google Scholar 

  37. L.E. Murr, M.A. Meyers, C.-S. Niou, Y.J. Chen, S. Pappu, and C. Kennedy: Acta Mater., 1997, vol. 45, pp. 157–75.

    Article  CAS  Google Scholar 

  38. F.J. Zerilli and R.W. Armstrong: in Shock Waves in Condensed Matter, S.C. Schmidt and N.C. Holmes, eds., North-Holland, Amsterdam, 1987, pp. 273–76.

    Google Scholar 

  39. G.T. Gray III: Symp. Twinning in Advanced Materials, M.H. Yoo and M. Wuttig, eds., TMS, Warrendale, PA, 1994, pp. 337–49.

    Google Scholar 

  40. U.R. de Andrade: Ph.D. Thesis, University of California, San Diego, CA, 1993.

    Google Scholar 

  41. S. Nemat-Nasser, J.B. Issacs, and J.E. Starrett: Proc. R. Soc. London A, 1991, vol. 435, pp. 371–91.

    Article  Google Scholar 

  42. Annual Book of ASTM Standards, ASTM E112-88, ASTM, Philadelphia, PA, 1988, pp. 294–316.

  43. W.J. Babyak and F.N. Rhines: Trans. TMS-AIME, 1960, vol. 218, pp. 21–23.

    Google Scholar 

  44. T. Kan and P. Haasen: Mater. Sci. Eng., 1969–70, vol. 5, pp. 176–78.

    Google Scholar 

  45. R. Labusch: Phys. Status Solidi, 1970, vol. 41, pp. 659–69.

    Google Scholar 

  46. P. Jax, P. Kratochvil, and P. Haasen: Acta Metall., 1970, vol. 18, pp. 237–45.

    Article  CAS  Google Scholar 

  47. R. Labusch, G. Grange, J. Ahearn, and P. Haasen: in Rate Processes in Plastic Deformation of Materials, J.C.M. Li and A.K. Mukherjee, eds., ASM, Cleveland, OH, 1975, pp. 26–46.

    Google Scholar 

  48. B.C. Wonsiewicz and G.Y. Chin: Metall. Trans., 1970, vol. 1, pp. 2715–22.

    CAS  Google Scholar 

  49. N. Ono and S. Karashima: Scripta Metall., 1982, vol. 16, pp. 381–84.

    Article  CAS  Google Scholar 

  50. D.J. Parry and A.G. Walker: in Mechanical Properties of Materials at High Rates of Strain, J. Harding, eds., Institute of Physics, Bristol, 1989, pp. 329–36.

    Google Scholar 

  51. R.J. De Angelis and J.B. Cohen: Trans. ASM, 1965, vol. 58, pp. 700–02.

    Google Scholar 

  52. M.G. Stout and U.F. Kocks: in Texture and Anisotropy, U.F. Kocks, C.N. Tomé, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 420–65.

    Google Scholar 

  53. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  54. H. Mecking and Y. Estrin: in Constitutive Relations and Their Physical Basis, S.I. Andersen, J.B. Bilde-Sørensen, N. Hansen, T. Leffers, H. Lilholt, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1987, pp. 123–45.

    Google Scholar 

  55. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  56. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  57. Y. Estrin and H. Mecking: Int. J. Plasticity, 1986, vol. 2, pp. 73–85.

    Article  Google Scholar 

  58. Metals Handbook, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 216–345.

  59. U.F. Kocks: in The Mechanics of Dislocations, ASM, Metals Park, OH, 1985, pp. 81–83.

    Google Scholar 

  60. U.F. Kocks: in Unified Constitutive Equations for Creep and Plasticity, A.K. Miller, ed., Elsevier, London, 1987, pp. 18–80.

    Google Scholar 

  61. D.H. Lassila: in Mechanical Properties of Materials at High Rates of Strain, J. Harding, ed., Institute of Physics, Bristol, 1989, pp. 323–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohatgi, A., Vecchio, K.S. & Gray, G.T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall Mater Trans A 32, 135–145 (2001). https://doi.org/10.1007/s11661-001-0109-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0109-7

Keywords

Navigation